Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 33(13): 1152-1163, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38558123

RESUMEN

Neanderthal and Denisovan hybridisation with modern humans has generated a non-random genomic distribution of introgressed regions, the result of drift and selection dynamics. Cross-species genomic incompatibility and more efficient removal of slightly deleterious archaic variants have been proposed as selection-based processes involved in the post-hybridisation purge of archaic introgressed regions. Both scenarios require the presence of functionally different alleles across Homo species onto which selection operated differently according to which populations hosted them, but only a few of these variants have been pinpointed so far. In order to identify functionally divergent archaic variants removed in humans, we focused on mitonuclear genes, which are underrepresented in the genomic landscape of archaic humans. We searched for non-synonymous, fixed, archaic-derived variants present in mitonuclear genes, rare or absent in human populations. We then compared the functional impact of archaic and human variants in the model organism Saccharomyces cerevisiae. Notably, a variant within the mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) gene exhibited a significant decrease in respiratory activity and a substantial reduction of Cox2 levels, a proxy for mitochondrial protein biosynthesis, coupled with the accumulation of the YARS2 protein precursor and a lower amount of mature enzyme. Our work suggests that this variant is associated with mitochondrial functionality impairment, thus contributing to the purging of archaic introgression in YARS2. While different molecular mechanisms may have impacted other mitonuclear genes, our approach can be extended to the functional screening of mitonuclear genetic variants present across species and populations.


Asunto(s)
Hombre de Neandertal , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Hombre de Neandertal/genética , Animales , Variación Genética , Mitocondrias/genética , Mitocondrias/metabolismo , Alelos , Introgresión Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Int J Legal Med ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105780

RESUMEN

STR loci localized on the X chromosome provide information additional to the autosomal markers routinely analyzed in forensic genetics, integrating genetic systems as Y-STRs and mitochondrial DNA in the investigation of complex kinship scenarios and mass disaster cases.In this study we genotyped 12 X-STR loci in 251 male samples from four populations of Namibia in southern Africa using the Investigator Argus X-12 kit (Qiagen, Hilden, Germany). Forensic efficiency parameters indicated high power of discrimination in the considered populations. As part of our investigation, we highlighted partial linkage associations between loci within known linkage groups (LGs) and identified several occurrences of previously unreported out-of-ladder (OL) alleles.Genetic distances between the Namibian populations here investigated and other African (Eritrea, Ethiopia, Somalia, Guinea, Cape Verde) and non-African (Germany, China, Philippines) populations using loci grouped in LGs mirrored their biogeographical distribution differently for each linkage group. Haplotype sharing within each LG revealed a high degree of population-specific types, hinting to the potential of these markers for ancestry applications.These results highlight the importance to produce specific and freely available population databases especially for multi-ethnic countries. This novel dataset is expected to be of interest for population studies that need an accessible reference dataset of African regions not currently well represented, as well as possible relevance for forensic applications focusing on the biogeographic origin of samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA