Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Cancer ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935523

RESUMEN

Protein function alteration and protein mislocalization are cancer hallmarks that drive oncogenesis. N6-methyladenosine (m6A) deposition mediated by METTL3, METTL16, and METTL5 together with the contribution of additional subunits of the m6A system, has shown a dramatic impact on cancer development. However, the cellular localization of m6A proteins inside tumor cells has been little studied so far. Interestingly, recent evidence indicates that m6A methyltransferases are not always confined to the nucleus, suggesting that epitranscriptomic factors may also have multiple oncogenic roles beyond m6A that still represent an unexplored field. To date novel epigenetic drugs targeting m6A modifiers, such as METTL3 inhibitors, are entering into clinical trials, therefore, the study of the potential onco-properties of m6A effectors beyond m6A is required. Here we will provide an overview of methylation-independent functions of the m6A players in cancer, describing the molecular mechanisms involved and the future implications for therapeutics.

2.
J Transl Med ; 22(1): 676, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044184

RESUMEN

BACKGROUND: Breast cancer manifests as a heterogeneous pathology marked by complex metabolic reprogramming essential to satisfy its energy demands. Oncogenic signals boost the metabolism, modifying fatty acid synthesis and glucose use from the onset to progression and therapy resistant-forms. However, the exact contribution of metabolic dependencies during tumor evolution remains unclear. METHODS: In this study, we elucidate the connection between FASN and LDHA, pivotal metabolic genes, and their correlation with tumor grade and therapy response using datasets from public repositories. Subsequently, we evaluated the metabolic and proliferative functions upon FASN and LDHA inhibition in breast cancer models. Lastly, we integrated metabolomic and lipidomic analysis to define the contributions of metabolites, lipids, and precursors to the metabolic phenotypes. RESULTS: Collectively, our findings indicate metabolic shifts during breast cancer progression, unvealling two distinct functional energy phenotypes associated with aggressiveness and therapy response. Specifically, FASN exhibits reduced expression in advance-grade tumors and therapy-resistant forms, whereas LDHA demonstrates higher expression. Additionally, the biological and metabolic impact of blocking the enzymatic activity of FASN and LDHA was correlated with resistant conditions. CONCLUSIONS: These observations emphasize the intrinsic metabolic heterogeneity within breast cancer, thereby highlighting the relevance of metabolic interventions in the field of precision medicine.


Asunto(s)
Neoplasias de la Mama , Acido Graso Sintasa Tipo I , Humanos , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/enzimología , Femenino , Acido Graso Sintasa Tipo I/metabolismo , Acido Graso Sintasa Tipo I/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Lipidómica , Metabolómica , L-Lactato Deshidrogenasa
3.
J Transl Med ; 21(1): 32, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36650542

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) and prostate cancer (PCa) are among the most prevalent malignant tumors worldwide. There is now a comprehensive understanding of metabolic reprogramming as a hallmark of cancer. Fatty acid synthase (FASN) is a key regulator of the lipid metabolic network, providing energy to favor tumor proliferation and development. Whereas the biological role of FASN is known, its response and sensitivity to inhibition have not yet been fully established in these two cancer settings. METHODS: To evaluate the association between FASN expression, methylation, prognosis, and mutational profile in PDAC and PCa, we interrogated public databases and surveyed online platforms using TCGA data. The STRING database was used to investigate FASN interactors, and the Gene Set Enrichment Analysis platform Reactome database was used to perform an enrichment analysis using data from RNA sequencing public databases of PDAC and PCa. In vitro models using PDAC and PCa cell lines were used to corroborate the expression of FASN, as shown by Western blot, and the effects of FASN inhibition on cell proliferation/cell cycle progression and mitochondrial respiration were investigated with MTT, colony formation assay, cell cycle analysis and MitoStress Test. RESULTS: The expression of FASN was not modulated in PDAC compared to normal pancreatic tissues, while it was overexpressed in PCa, which also displayed a different level of promoter methylation. Based on tumor grade, FASN expression decreased in advanced stages of PDAC, but increased in PCa. A low incidence of FASN mutations was found for both tumors. FASN was overexpressed in PCa, despite not reaching statistical significance, and was associated with a worse prognosis than in PDAC. The biological role of FASN interactors correlated with lipid metabolism, and GSEA indicated that lipid-mediated mitochondrial respiration was enriched in PCa. Following validation of FASN overexpression in PCa compared to PDAC in vitro, we tested TVB-2640 as a FASN inhibitor. PCa proliferation arrest was modulated by FASN inhibition in a dose- and time-dependent manner, whereas PDAC proliferation was not altered. In line with this finding, mitochondrial respiration was found to be more affected in PCa than in PDAC. FASN inhibition interfered with metabolic signaling causing lipid accumulation and affecting cell viability with an impact on the replicative processes. CONCLUSIONS: FASN exhibited differential expression patterns in PDAC and PCa, suggesting a different evolution during cancer progression. This was corroborated by the fact that both tumors responded differently to FASN inhibition in terms of proliferative potential and mitochondrial respiration, indicating that its use should reflect context specificity.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias de la Próstata , Masculino , Humanos , Multiómica , Próstata/metabolismo , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Neoplasias de la Próstata/genética , Lípidos , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Acido Graso Sintasa Tipo I/genética , Acido Graso Sintasa Tipo I/metabolismo , Neoplasias Pancreáticas
4.
J Transl Med ; 21(1): 627, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37715252

RESUMEN

BACKGROUND: Cancer cells are characterized by uncontrolled cell proliferation and impaired bioenergetics. Sirtuins are a family of highly conserved enzymes that play a fundamental role in energy metabolism regulation. SIRT1, in particular, drives many physiological stress responses and metabolic pathways following nutrient deprivation. We previously showed that SIRT1 activation using SCIC2.1 was able to attenuate genotoxic response and senescence. Here, we report that in hepatocellular carcinoma (HCC) cells under glucose-deprived conditions, SCIC2.1 treatment induced overexpression of SIRT1, SIRT3, and SIRT6, modulating metabolic response. METHODS: Flow cytometry was used to analyze the cell cycle. The MTT assay and xCELLigence system were used to measure cell viability and proliferation. In vitro enzymatic assays were carried out as directed by the manufacturer, and the absorbance was measured with an automated Infinite M1000 reader. Western blotting and immunoprecipitation were used to evaluate the expression of various proteins described in this study. The relative expression of genes was studied using real-time PCR. We employed a Seahorse XF24 Analyzer to determine the metabolic state of the cells. Oil Red O staining was used to measure lipid accumulation. RESULTS: SCIC2.1 significantly promoted mitochondrial biogenesis via the AMPK-p53-PGC1α pathway and enhanced mitochondrial ATP production under glucose deprivation. SIRT1 inhibition by Ex-527 further supported our hypothesis that metabolic effects are dependent on SIRT1 activation. Interestingly, SCIC2.1 reprogrammed glucose metabolism and fatty acid oxidation for bioenergetic circuits by repressing de novo lipogenesis. In addition, SCIC2.1-mediated SIRT1 activation strongly modulated antioxidant response through SIRT3 activation, and p53-dependent stress response via indirect recruitment of SIRT6. CONCLUSION: Our results show that SCIC2.1 is able to promote energy homeostasis, attenuating metabolic stress under glucose deprivation via activation of SIRT1. These findings shed light on the metabolic action of SIRT1 in the pathogenesis of HCC and may help determine future therapies for this and, possibly, other metabolic diseases.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuina 3 , Sirtuinas , Humanos , Neoplasias Hepáticas/genética , Sirtuina 1 , Carcinoma Hepatocelular/genética , Proteína p53 Supresora de Tumor , Homeostasis , Sirtuinas/genética
5.
Cell Mol Life Sci ; 79(8): 410, 2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35821533

RESUMEN

Beyond well-assessed risk factors, cardiovascular events could be also associated with the presence of epigenetic and genetic alterations, such as the methylenetetrahydrofolate-reductase (MTHFR) C677T polymorphism. This gene variant is related to increased circulating levels of homocysteine (Hcy) and cardiovascular risk. However, heterozygous carriers have an augmented risk of cardiovascular accidents independently from normal Hcy levels, suggesting the presence of additional deregulated processes in MTHFR C677T carriers. Here, we hypothesize that targeting Sirtuin 1 (SIRT1) could be an alternative mechanism to control the cardiovascular risk associated to MTHFR deficiency condition. Flow Mediated Dilatation (FMD) and light transmission aggregometry assay were performed in subjects carrying MTHFR C677T allele after administration of resveratrol, the most powerful natural clinical usable compound that owns SIRT1 activating properties. MTHFR C677T carriers with normal Hcy levels revealed endothelial dysfunction and enhanced platelet aggregation associated with SIRT1 downregulation. SIRT1 activity stimulation by resveratrol intake was able to override these abnormalities without affecting Hcy levels. Impaired endothelial function, bleeding time, and wire-induced thrombus formation were rescued in a heterozygous Mthfr-deficient (Mthfr+/-) mouse model after resveratrol treatment. Using a cell-based high-throughput multiplexed screening (HTS) assay, a novel selective synthetic SIRT1 activator, namely ISIDE11, was identified. Ex vivo and in vivo treatment of Mthfr+/- mice with ISIDE11 rescues endothelial vasorelaxation and reduces wire-induced thrombus formation, effects that were abolished by SIRT1 inhibitor. Moreover, platelets from MTHFR C677T allele carriers treated with ISIDE11 showed normalization of their typical hyper-reactivity. These results candidate SIRT1 activation as a new therapeutic strategy to contain cardio and cerebrovascular events in MTHFR carriers.


Asunto(s)
Homocistinuria , Metilenotetrahidrofolato Reductasa (NADPH2) , Sirtuina 1 , Trombosis , Animales , Genotipo , Homocistinuria/tratamiento farmacológico , Homocistinuria/metabolismo , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Ratones , Espasticidad Muscular , Trastornos Psicóticos/metabolismo , Resveratrol/farmacología , Sirtuina 1/genética , Sirtuina 1/metabolismo , Trombosis/tratamiento farmacológico , Trombosis/genética , Trombosis/metabolismo , Trombosis/prevención & control
6.
Mol Cancer ; 21(1): 125, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681235

RESUMEN

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Asunto(s)
Cromatina , Leucemia Mieloide Aguda , Complejo Represivo Polycomb 1 , Cromatina/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Bioorg Chem ; 110: 104801, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33756235

RESUMEN

The discovery and development of isoform-selective histone deacetylase (HDAC) inhibitor is a challenging task because of the sequence homology among HDAC enzymes. In the present work, novel tetrahydro benzo[b]thiophene-3-carbonitrile based benzamides were designed, synthesized, and evaluated as HDAC inhibitors. Pharmacophore modeling was our main design strategy, and two novel series of tetrahydro benzo[b]thiophene-3-carbonitrile derivatives with piperidine linker (series 1) and piperazine linker (series 2) were identified as HDAC inhibitors. Among all the synthesised compounds, 9h with 4-(aminomethyl) piperidine linker and 14n with piperazine linker demonstrated good activity against human HDAC1 and HDAC6, respectively. Both the compounds also exhibited good antiproliferative activity against several human cancer cell lines. Both these compounds (9h and 14n) also induced cell cycle arrest and apoptosis in U937 and MDA-MB-231 cancer cells. Overall, for the first time, this research discovered potent isoform-selective HDAC inhibitors using cyclic linker instead of the aliphatic chain and aromatic ring system, which were reported in known HDAC inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Descubrimiento de Drogas , Inhibidores de Histona Desacetilasas/farmacología , Tiofenos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas , Humanos , Estructura Molecular , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química
8.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-33801599

RESUMEN

MYC is a proto-oncogene regulating a large number of genes involved in a plethora of cellular functions. Its deregulation results in activation of MYC gene expression and/or an increase in MYC protein stability. MYC overexpression is a hallmark of malignant growth, inducing self-renewal of stem cells and blocking senescence and cell differentiation. This review summarizes the latest advances in our understanding of MYC-mediated molecular mechanisms responsible for its oncogenic activity. Several recent findings indicate that MYC is a regulator of cancer genome and epigenome: MYC modulates expression of target genes in a site-specific manner, by recruiting chromatin remodeling co-factors at promoter regions, and at genome-wide level, by regulating the expression of several epigenetic modifiers that alter the entire chromatin structure. We also discuss novel emerging therapeutic strategies based on both direct modulation of MYC and its epigenetic cofactors.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional , Animales , Apoptosis , Carcinogénesis , Diferenciación Celular , Proliferación Celular , Cromatina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Epigénesis Genética , Epigenoma , Genoma Humano , Células Madre Hematopoyéticas/citología , Homeostasis , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Leucemia/metabolismo , Linfoma/metabolismo , Proto-Oncogenes Mas , Transducción de Señal , Células Madre/metabolismo , Factores de Transcripción/metabolismo
9.
Molecules ; 25(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935970

RESUMEN

Plants produce a vast array of biomolecules with beneficial effects for human health. In this study, polyphenol and anthocyanin-rich extracts (PAE) from pigmented tubers of Solanum tuberosum L. varieties "Blue Star", "Magenta Love", and "Double Fun" in comparison with the more extensively studied "Vitelotte" were evaluated and compared for antiproliferative effects in human leukemia cells, and their phytochemical and genetic profiles were determined. In U937 cells, upon treatment with PAE, it was possible to reveal the expression of specific apoptotic players, such as caspase 8, 9, 3, and poly (ADP-ribose) polymerase (PARP), as well as the induction of monocyte and granulocyte differentiation. A liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) investigation revealed the presence of polyphenolic compounds in all the varieties of potatoes analyzed, among which caffeoyl and feruloyl quinic acid derivatives were the most abundant, as well as several acylated anthocyanins. Each pigmented variety was genotyped by DNA-based molecular markers, and flavonoid-related transcription factors were profiled in tubers in order to better characterize these outstanding resources and contribute to their exploitation in breeding. Interesting biological activities were observed for "Blue Star" and "Vitelotte" varieties with respect to the minor or no effect of the "Double Fun" variety.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Tubérculos de la Planta/química , Polifenoles/química , Solanum tuberosum/química , Solanum tuberosum/genética , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Perfil Genético , Genotipo , Humanos , Fitoquímicos/química , Extractos Vegetales/química , Espectrometría de Masa por Ionización de Electrospray
10.
Int J Mol Sci ; 20(22)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31726691

RESUMEN

Sirtuins, a family of nicotinamide adenine dinucleotide (NAD+)-dependent lysine deacetylases, are promising targets for anticancer treatment. Recently, we characterized a novel pan-sirtuin (SIRT) inhibitor, MC2494, displaying antiproliferative effects and able to induce death pathways in several human cancer cell lines and decrease tumor growth in vivo. Based on the chemical scaffold of MC2494, and by applying a structure-activity relationship approach, we developed a small library of derivative compounds and extensively analyzed their enzymatic action at cellular level as well as their ability to induce cell death. We also investigated the effect of MC2494 on regulation of cell cycle progression in different cancer cell lines. Our investigations indicated that chemical substitutions applied to MC2494 scaffold did not confer higher efficacy in terms of biological activity and SIRT1 inhibition, but carbethoxy-containing derivatives showed higher SIRT2 specificity. The carbethoxy derivative of MC2494 and its 2-methyl analog displayed the strongest enzymatic activity. Applied chemical modifications improved the enzymatic selectivity of these SIRT inhibitors. Additionally, the observed activity of MC2494 via cell cycle and apoptotic regulation and inhibition of cell migration supports the potential role of SIRTs as targets in tumorigenesis and makes SIRT-targeting molecules good candidates for novel pharmacological approaches in personalized medicine.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Proteínas de Neoplasias , Neoplasias , Sirtuina 1 , Sirtuina 2 , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Células HL-60 , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Células K562 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Molibdoferredoxina , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/patología , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/metabolismo , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Células U937
11.
J Cell Physiol ; 230(11): 2807-20, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25846844

RESUMEN

Protein glycation is a non-enzymatic, irreversible modification of protein amino groups by reactive carbonyl species leading to the formation of advanced glycation end products (AGEs). Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases related to protein misfolding and amyloid aggregation, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. We have recently shown that glycation of the amyloidogenic W7FW14F apomyoglobin mutant significantly accelerates the amyloid fibrils formation providing evidence that glycation actively participates to the process. In the present study, to test if glycation can be considered also a triggering factor in amyloidosis, we evaluated the ability of different glycation agents to induce amyloid aggregation in the soluble wild-type apomyoglobin. Our results show that glycation covalently modifies apomyoglobin and induces conformational changes that lead to the formation of oligomeric species that are not implicated in amyloid aggregation. Thus, AGEs formation does not trigger amyloid aggregation in the wild-type apomyoglobin but only induce the formation of soluble oligomeric species able to affect cell viability. The molecular bases of cell toxicity induced by AGEs formed upon glycation of wild-type apomyoglobin have been also investigated.


Asunto(s)
Amiloide/metabolismo , Apoproteínas/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Mioglobina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Apoproteínas/química , Apoproteínas/genética , Supervivencia Celular , Dicroismo Circular , Glicosilación , Humanos , Ratones , Mutación , Mioglobina/química , Mioglobina/genética , Células 3T3 NIH , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología
12.
Ageing Res Rev ; 95: 102251, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38428821

RESUMEN

Aging is a pathophysiological process that causes a gradual and permanent reduction in all biological system functions. The phenomenon is caused by the accumulation of endogenous and exogenous damage as a result of several stressors, resulting in significantly increased risks of various age-related diseases such as neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. In addition, aging appears to be connected with mis-regulation of programmed cell death (PCD), which is required for regular cell turnover in many tissues sustained by cell division. According to the recent nomenclature, PCDs are physiological forms of regulated cell death (RCD) useful for normal tissue development and turnover. To some extent, some cell types are connected with a decrease in RCD throughout aging, whereas others are related with an increase in RCD. Perhaps the widespread decline in RCD markers with age is due to a slowdown of the normal rate of homeostatic cell turnover in various adult tissues. As a result, proper RCD regulation requires a careful balance of many pro-RCD and anti-RCD components, which may render cell death signaling pathways more sensitive to maladaptive signals during aging. Current research, on the other hand, tries to further dive into the pathophysiology of aging in order to develop therapies that improve health and longevity. In this scenario, RCD handling might be a helpful strategy for human health since it could reduce the occurrence and development of age-related disorders, promoting healthy aging and lifespan. In this review we propose a general overview of the most recent RCD mechanisms and their connection with the pathophysiology of aging in order to promote targeted therapeutic strategies.


Asunto(s)
Enfermedades Neurodegenerativas , Muerte Celular Regulada , Humanos , Envejecimiento/fisiología , Apoptosis/fisiología , Longevidad
13.
Ageing Res Rev ; 99: 102405, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38971321

RESUMEN

Diabetes mellitus, a metabolic condition affecting around 537 million individuals worldwide, poses significant challenges, particularly among the elderly population. The etiopathogenesis of type 2 diabetes (T2D) depends on a combination of the effects driven by advancing age, genetic background, and lifestyle habits, e.g. overnutrition. These factors influence the development of T2D differently in men and women, with an obvious sexual dimorphism possibly underlying the diverse clinical features of the disease in different sexes. More recently, environmental pollution, estimated to cause 9 million deaths every year, is emerging as a novel risk factor for the development of T2D. Indeed, exposure to atmospheric pollutants such as PM2.5, O3, NO2, and Persistent Organic Pollutants (POP)s, along with their combination and bioaccumulation, is associated with the development of T2D and obesity, with a 15 % excess risk in case of exposure to very high levels of PM2.5. Similar data are available for plasticizer molecules, e.g. bisphenol A and phthalates, emerging endocrine-disrupting chemicals. Even though causality is still debated at this stage, preclinical evidence sustains the ability of multiple pollutants to affect pancreatic function, promote insulin resistance, and alter lipid metabolism, possibly contributing to T2D onset and progression. In addition, preclinical findings suggest a possible role also for plastic itself in the development of T2D. Indeed, pioneeristic studies evidenced that micro- or nanoplastics (MNP)s, particles in the micro- or nano- range, promote cellular damage, senescence, inflammation, and metabolic disturbances, leading to insulin resistance and impaired glucose metabolism in animal and/or in vitro models. Here we synthesize recent knowledge relative to the association between air-related or plastic-derived pollutants and the incidence of T2D, discussing also the possible mechanistic links suggested by the available literature. We then anticipate the need for future studies in the field of candidate therapeutic strategies limiting pollution-induced damage in preclinical models, such as SGLT-2 inhibitors. We finally postulate that future guidelines for T2D prevention should consider pollution and sex an additional risk factors to limit the diabetes pandemic.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Factores de Riesgo , Femenino , Masculino , Contaminación Ambiental/efectos adversos , Animales , Exposición a Riesgos Ambientales/efectos adversos , Factores Sexuales , Caracteres Sexuales
14.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38730609

RESUMEN

Hematological malignancies are among the top five most frequent forms of cancer in developed countries worldwide. Although the new therapeutic approaches have improved the quality and the life expectancy of patients, the high rate of recurrence and drug resistance are the main issues for counteracting blood disorders. Chemotherapy-resistant leukemic clones activate molecular processes for biological survival, preventing the activation of regulated cell death pathways, leading to cancer progression. In the past decade, leukemia research has predominantly centered around modulating the well-established processes of apoptosis (type I cell death) and autophagy (type II cell death). However, the development of therapy resistance and the adaptive nature of leukemic clones have rendered targeting these cell death pathways ineffective. The identification of novel cell death mechanisms, as categorized by the Nomenclature Committee on Cell Death (NCCD), has provided researchers with new tools to overcome survival mechanisms and activate alternative molecular pathways. This review aims to synthesize information on these recently discovered RCD mechanisms in the major types of leukemia, providing researchers with a comprehensive overview of cell death and its modulation.

15.
Biomed Opt Express ; 15(3): 1976-1994, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38495717

RESUMEN

In this work, a 3D-printed plasmonic chip based on a silver-gold bilayer was developed in order to enhance the optical response of the surface plasmon resonance (SPR) probe. More specifically, numerical and experimental results were obtained on the 3D-printed SPR platform based on a silver-gold bilayer. Then, the optimized probe's gold plasmonic interface was functionalized with a specific antibody directed against the p27Kip1 protein (p27), an important cell cycle regulator. The 3D-printed plasmonic biosensor was tested for p27 detection with good selectivity and a detection limit of 55 pM. The biosensor system demonstrated performance similar to commercially available ELISA (enzyme-linked immunoassay) kits, with several advantages, such as a wide detection range and a modular and simple-based architecture. The proposed biosensing technology offers flexible deployment options that are useful in disposable, low-cost, small-size, and simple-to-use biochips, envisaging future applications in experimental and biomedical research.

16.
Cells ; 12(6)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36980194

RESUMEN

Sirtuin 5 (SIRT5) is a predominantly mitochondrial enzyme catalyzing the removal of glutaryl, succinyl, malonyl, and acetyl groups from lysine residues through a NAD+-dependent deacylase mechanism. SIRT5 is an important regulator of cellular homeostasis and modulates the activity of proteins involved in different metabolic pathways such as glycolysis, tricarboxylic acid (TCA) cycle, fatty acid oxidation, electron transport chain, generation of ketone bodies, nitrogenous waste management, and reactive oxygen species (ROS) detoxification. SIRT5 controls a wide range of aspects of myocardial energy metabolism and plays critical roles in heart physiology and stress responses. Moreover, SIRT5 has a protective function in the context of neurodegenerative diseases, while it acts as a context-dependent tumor promoter or suppressor. In addition, current research has demonstrated that SIRT5 is implicated in the SARS-CoV-2 infection, although opposing conclusions have been drawn in different studies. Here, we review the current knowledge on SIRT5 molecular actions under both healthy and diseased settings, as well as its functional effects on metabolic targets. Finally, we revise the potential of SIRT5 as a therapeutic target and provide an overview of the currently reported SIRT5 modulators, which include both activators and inhibitors.


Asunto(s)
COVID-19 , Neoplasias , Sirtuinas , Humanos , COVID-19/metabolismo , Redes y Vías Metabólicas , Neoplasias/metabolismo , SARS-CoV-2/metabolismo , Sirtuinas/metabolismo
17.
Cells ; 12(7)2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-37048148

RESUMEN

Histone modifications, as key chromatin regulators, play a pivotal role in the pathogenesis of several diseases, such as cancer. Acetylation, and more specifically lysine acetylation, is a reversible epigenetic process with a fundamental role in cell life, able to target histone and non-histone proteins. This epigenetic modification regulates transcriptional processes and protein activity, stability, and localization. Several studies highlight a specific role for HAT1 in regulating molecular pathways, which are altered in several pathologies, among which is cancer. HAT1 is the first histone acetyltransferase discovered; however, to date, its biological characterization is still unclear. In this review, we summarize and update the current knowledge about the biological function of this acetyltransferase, highlighting recent advances of HAT1 in the pathogenesis of cancer.


Asunto(s)
Histona Acetiltransferasas , Histonas , Neoplasias , Humanos , Cromatina , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Neoplasias/genética
19.
Clin Epigenetics ; 14(1): 182, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36539894

RESUMEN

Chromatin structural organization, gene expression and proteostasis are intricately regulated in a wide range of biological processes, both physiological and pathological. Protein acetylation, a major post-translational modification, is tightly involved in interconnected biological networks, modulating the activation of gene transcription and protein action in cells. A very large number of studies describe the pivotal role of the so-called acetylome (accounting for more than 80% of the human proteome) in orchestrating different pathways in response to stimuli and triggering severe diseases, including cancer. NAA60/NatF (N-terminal acetyltransferase F), also named HAT4 (histone acetyltransferase type B protein 4), is a newly discovered acetyltransferase in humans modifying N-termini of transmembrane proteins starting with M-K/M-A/M-V/M-M residues and is also thought to modify lysine residues of histone H4. Because of its enzymatic features and unusual cell localization on the Golgi membrane, NAA60 is an intriguing acetyltransferase that warrants biochemical and clinical investigation. Although it is still poorly studied, this review summarizes current findings concerning the structural hallmarks and biological role of this novel targetable epigenetic enzyme.


Asunto(s)
Acetiltransferasas , Metilación de ADN , Humanos , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Aparato de Golgi/metabolismo , Histonas/metabolismo , Cromatina/metabolismo , Acetilación , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
20.
Mol Metab ; 64: 101561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35944897

RESUMEN

OBJECTIVE: Aberrant activity of androgen receptor (AR) is the primary cause underlying development and progression of prostate cancer (PCa) and castration-resistant PCa (CRPC). Androgen signaling regulates gene transcription and lipid metabolism, facilitating tumor growth and therapy resistance in early and advanced PCa. Although direct AR signaling inhibitors exist, AR expression and function can also be epigenetically regulated. Specifically, lysine (K)-specific demethylases (KDMs), which are often overexpressed in PCa and CRPC phenotypes, regulate the AR transcriptional program. METHODS: We investigated LSD1/UTX inhibition, two KDMs, in PCa and CRPC using a multi-omics approach. We first performed a mitochondrial stress test to evaluate respiratory capacity after treatment with MC3324, a dual KDM-inhibitor, and then carried out lipidomic, proteomic, and metabolic analyses. We also investigated mechanical cellular properties with acoustic force spectroscopy. RESULTS: MC3324 induced a global increase in H3K4me2 and H3K27me3 accompanied by significant growth arrest and apoptosis in androgen-responsive and -unresponsive PCa systems. LSD1/UTX inhibition downregulated AR at both transcriptional and non-transcriptional level, showing cancer selectivity, indicating its potential use in resistance to androgen deprivation therapy. Since MC3324 impaired metabolic activity, by modifying the protein and lipid content in PCa and CRPC cell lines. Epigenetic inhibition of LSD1/UTX disrupted mitochondrial ATP production and mediated lipid plasticity, which affected the phosphocholine class, an important structural element for the cell membrane in PCa and CRPC associated with changes in physical and mechanical properties of cancer cells. CONCLUSIONS: Our data suggest a network in which epigenetics, hormone signaling, metabolite availability, lipid content, and mechano-metabolic process are closely related. This network may be able to identify additional hotspots for pharmacological intervention and underscores the key role of KDM-mediated epigenetic modulation in PCa and CRPC.


Asunto(s)
Histona Demetilasas , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/uso terapéutico , Andrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Lípidos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA