Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36731871

RESUMEN

D-xylose utilization by yeasts is an essential feature for improving second-generation ethanol production. However, industrial yeast strains are incapable of consuming D-xylose. Previous analyzes of D-xylose-consuming or fermenting yeast species reveal that the genomic features associated with this phenotype are complex and still not fully understood. Here we present a previously neglected yeast enzyme related to D-xylose metabolism, D-xylose dehydrogenase (XylDH), which is found in at least 105 yeast genomes. By analyzing the XylDH gene family, we brought evidence of gene evolution marked by purifying selection on codons and positive selection evidence in D-xylose-consuming and fermenting species, suggesting the importance of XylDH for D-xylose-related phenotypes in yeasts. Furthermore, although we found no putative metabolic pathway for XylDH in yeast genomes, namely the absence of three bacterial known pathways for this enzyme, we also provide its expression profile on D-xylose media following D-xylose reductase for two yeasts with publicly available transcriptomes. Based on these results, we suggest that XylDH plays an important role in D-xylose usage by yeasts, likely being involved in a cofactor regeneration system by reducing cofactor imbalance in the D-xylose reductase pathway.


Asunto(s)
Aldehído Reductasa , Xilosa , Xilosa/metabolismo , Fermentación , Aldehído Reductasa/metabolismo , Levaduras/genética
2.
FEMS Yeast Res ; 21(4)2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33983370

RESUMEN

In this work, we evaluated the fermentative performance and metabolism modifications of a second generation (2G) industrial yeast by comparing an industrial condition during laboratory and industrial scale fermentations. Fermentations were done using industrial lignocellulosic hydrolysate and a synthetic medium containing inhibitors and analyses were carried out through transcriptomics and proteomics of these experimental conditions. We found that fermentation profiles were very similar, but there was an increase in xylose consumption rate during fermentations using synthetic medium when compared to lignocellulosic hydrolysate, likely due to the presence of unknown growth inhibitors contained in the hydrolysate. We also evaluated the bacterial community composition of the industrial fermentation setting and found that the presence of homofermentative and heterofermentative bacteria did not significantly change the performance of yeast fermentation. In parallel, temporal differentially expressed genes (tDEG) showed differences in gene expression profiles between compared conditions, including heat shocks and the presence of up-regulated genes from the TCA cycle during anaerobic xylose fermentation. Thus, we indicate HMF as a possible electron acceptor in this rapid respiratory process performed by yeast, in addition to demonstrating the importance of culture medium for the performance of yeast within industrial fermentation processes, highlighting the uniquenesses according to scales.


Asunto(s)
Etanol/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismo , Xilosa/metabolismo , Bacterias , Medios de Cultivo , Regulación Fúngica de la Expresión Génica , Microbiología Industrial , Lignina/metabolismo , Proteoma , RNA-Seq , Saccharomyces cerevisiae/genética , Transcriptoma
3.
Curr Genet ; 61(2): 185-202, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25614078

RESUMEN

Transposons are an important source of genetic variation. The phytopathogen Moniliophthora perniciosa shows high level of variability but little is known about the role of class I elements in shaping its genome. In this work, we aimed the characterization of a new gypsy/Ty3 retrotransposon species, named MpSaci, in the M. perniciosa genome. These elements are largely variable in size, ranging from 4 to 15 kb, and harbor direct long terminal repeats (LTRs) with varying degrees of similarity. Approximately, all of the copies are non-autonomous as shifts in the reading frame and stop codons were detected. Only two elements (MpSaci6 and MpSaci9) code for GAG and POL proteins that possess functional domains. Conserved domains that are typically not found in retrotransposons were detected and could potentially impact the expression of neighbor genes. Solo LTRs and several LARDs (large retrotransposon derivative) were detected. Unusual elements containing small sequences with or without interruptions that are similar to gag or different pol domains and presenting LTRs with different levels of similarities were identified. Methylation was observed in MpSaci reverse transcriptase sequences. Distribution analysis indicates that MpSaci elements are present in high copy number in the genomes of C-, S- and L-biotypes of M. perniciosa. In addition, C-biotype isolates originating from the state of Bahia have fragments in common with isolates from the Amazon region and two hybridization profiles related to two chromosomal groups. RT-PCR analysis reveals that the gag gene is constitutively expressed and that the expression is increased at least three-fold with nutrient depravation even though no new insertion were observed. These findings point out that MpSaci collaborated and, even though is primarily represented by non-autonomous elements, still might contribute to the generation of genetic variability in the most important cacao pathogen in Brazil.


Asunto(s)
Agaricales/genética , Genoma Fúngico , Filogenia , Retroelementos/genética , Agaricales/patogenicidad , Secuencia de Aminoácidos , Brasil , Cacao/microbiología , Humanos , Sistemas de Lectura Abierta , Alineación de Secuencia
4.
Microb Cell Fact ; 14: 13, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25633848

RESUMEN

BACKGROUND: The bioethanol production system used in Brazil is based on the fermentation of sucrose from sugarcane feedstock by highly adapted strains of the yeast Saccharomyces cerevisiae. Bacterial contaminants present in the distillery environment often produce yeast-bacteria cellular co-aggregation particles that resemble yeast-yeast cell adhesion (flocculation). The formation of such particles is undesirable because it slows the fermentation kinetics and reduces the overall bioethanol yield. RESULTS: In this study, we investigated the molecular physiology of one of the main S. cerevisiae strains used in Brazilian bioethanol production, PE-2, under two contrasting conditions: typical fermentation, when most yeast cells are in suspension, and co-aggregated fermentation. The transcriptional profile of PE-2 was assessed by RNA-seq during industrial scale fed-batch fermentation. Comparative analysis between the two conditions revealed transcriptional profiles that were differentiated primarily by a deep gene repression in the co-aggregated samples. The data also indicated that Lactobacillus fermentum was likely the main bacterial species responsible for cellular co-aggregation and for the high levels of organic acids detected in the samples. CONCLUSIONS: Here, we report the high-resolution gene expression profiling of strain PE-2 during industrial-scale fermentations and the transcriptional reprograming observed under co-aggregation conditions. This dataset constitutes an important resource that can provide support for further development of this key yeast biocatalyst.


Asunto(s)
Bacterias/genética , Etanol/metabolismo , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Biomasa , Brasil , Fermentación , Floculación , Ontología de Genes , Genotipo , Microbiología Industrial/métodos , Cinética , Interacciones Microbianas , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo
5.
BMC Genomics ; 15: 66, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24460833

RESUMEN

BACKGROUND: A successful development of herbivorous insects into plant tissues depends on coordination of metabolic processes. Plants have evolved complex mechanisms to recognize such attacks, and to trigger a defense response. To understand the transcriptional basis of this response, we compare gene expression profiles of two coffee genotypes, susceptible and resistant to leaf miner (Leucoptera coffella). A total of 22000 EST sequences from the Coffee Genome Database were selected for a microarray analysis. Fluorescence probes were synthesized using mRNA from the infested and non-infested coffee plants. Array hybridization, scanning and data normalization were performed using Nimble Scan® e ArrayStar® platforms. Genes with foldchange values +/-2 were considered differentially expressed. A validation of 18 differentially expressed genes was performed in infected plants using qRT-PCR approach. RESULTS: The microarray analysis indicated that resistant plants differ in gene expression profile. We identified relevant transcriptional changes in defense strategies before insect attack. Expression changes (>2.00-fold) were found in resistant plants for 2137 genes (1266 up-regulated and 873 down-regulated). Up-regulated genes include those responsible for defense mechanisms, hypersensitive response and genes involved with cellular function and maintenance. Also, our analyses indicated that differential expression profiles between resistant and susceptible genotypes are observed in the absence of leaf-miner, indicating that defense is already build up in resistant plants, as a priming mechanism. Validation of selected genes pointed to four selected genes as suitable candidates for markers in assisted-selection of novel cultivars. CONCLUSIONS: Our results show evidences that coffee defense responses against leaf-miner attack are balanced with other cellular functions. Also analyses suggest a major metabolic reconfiguration that highlights the complexity of this response.


Asunto(s)
Café/genética , Resistencia a la Enfermedad/genética , Genoma de Planta , Transcriptoma , Regulación hacia Abajo , Etiquetas de Secuencia Expresada , Genotipo , Redes y Vías Metabólicas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/genética , Regulación hacia Arriba
6.
BMC Genomics ; 15: 157, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24564253

RESUMEN

BACKGROUND: Transcriptional activator-like (TAL) effectors, formerly known as the AvrBs3/PthA protein family, are DNA-binding effectors broadly found in Xanthomonas spp. that transactivate host genes upon injection via the bacterial type three-secretion system. Biologically relevant targets of TAL effectors, i.e. host genes whose induction is vital to establish a compatible interaction, have been reported for xanthomonads that colonize rice and pepper; however, citrus genes modulated by the TAL effectors PthA"s" and PthC"s" of the citrus canker bacteria Xanthomonas citri (Xc) and Xanthomonas aurantifolii pathotype C (XaC), respectively, are poorly characterized. Of particular interest, XaC causes canker disease in its host lemon (Citrus aurantifolia), but triggers a defense response in sweet orange. RESULTS: Based on, 1) the TAL effector-DNA binding code, 2) gene expression data of Xc and XaC-infiltrated sweet orange leaves, and 3) citrus hypocotyls transformed with PthA2, PthA4 or PthC1, we have identified a collection of Citrus sinensis genes potentially targeted by Xc and XaC TAL effectors. Our results suggest that similar with other strains of Xanthomonas TAL effectors, PthA2 and PthA4, and PthC1 to some extent, functionally converge. In particular, towards induction of genes involved in the auxin and gibberellin synthesis and response, cell division, and defense response. We also present evidence indicating that the TAL effectors act as transcriptional repressors and that the best scoring predicted DNA targets of PthA"s" and PthC"s" in citrus promoters predominantly overlap with or localize near to TATA boxes of core promoters, supporting the idea that TAL effectors interact with the host basal transcriptional machinery to recruit the RNA pol II and start transcription. CONCLUSIONS: The identification of PthA"s" and PthC"s" targets, such as the LOB (lateral organ boundary) and CCNBS genes that we report here, is key for the understanding of the canker symptoms development during host susceptibility, or the defenses of sweet orange against the canker bacteria. We have narrowed down candidate targets to a few, which pointed out the host metabolic pathways explored by the pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrus/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Citrus/microbiología , Análisis por Conglomerados , Biología Computacional , Perfilación de la Expresión Génica , Genoma de Planta , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , TATA Box , Transcripción Genética , Xanthomonas/metabolismo
7.
Food Res Int ; 184: 114215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38609213

RESUMEN

The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.


Asunto(s)
Bacillus , Esporas Bacterianas , Esporas Bacterianas/genética , Bacterias , Cognición , Yema de Huevo
8.
J Fungi (Basel) ; 10(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38921393

RESUMEN

Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a ß-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.

9.
BMC Genomics ; 14: 91, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23394930

RESUMEN

BACKGROUND: The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated "omics" approaches. RESULTS: The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. CONCLUSIONS: The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non-pathogenic fungi, suggesting that its relevance in the lifestyle of these organisms should be based on a small number of specific proteins and/or with respect to differential gene regulation. In this regard, particular interest should be directed towards mitochondrial proteins with unknown function and the novel protein that might be specific to this species. Further functional characterization of these proteins could enhance our understanding of the role of mitochondria in phytopathogenicity.


Asunto(s)
Ascomicetos/genética , ADN Mitocondrial/genética , Genoma Mitocondrial , Proteínas Mitocondriales/genética , Ascomicetos/clasificación , Ascomicetos/patogenicidad , Cacao/genética , Cacao/microbiología , Biología Computacional , Regulación Fúngica de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteoma/análisis , Proteoma/genética
10.
ISME J ; 17(3): 354-370, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36536072

RESUMEN

The substrates of the Brazilian campos rupestres, a grassland ecosystem, have extremely low concentrations of phosphorus and nitrogen, imposing restrictions to plant growth. Despite that, this ecosystem harbors almost 15% of the Brazilian plant diversity, raising the question of how plants acquire nutrients in such a harsh environment. Here, we set out to uncover the taxonomic profile, the compositional and functional differences and similarities, and the nutrient turnover potential of microbial communities associated with two plant species of the campos rupestres-dominant family Velloziaceae that grow over distinct substrates (soil and rock). Using amplicon sequencing data, we show that, despite the pronounced composition differentiation, the plant-associated soil and rock communities share a core of highly efficient colonizers that tend to be highly abundant and is enriched in 21 bacterial families. Functional investigation of metagenomes and 522 metagenome-assembled genomes revealed that the microorganisms found associated to plant roots are enriched in genes involved in organic compound intake, and phosphorus and nitrogen turnover. We show that potential for phosphorus transport, mineralization, and solubilization are mostly found within bacterial families of the shared microbiome, such as Xanthobacteraceae and Bryobacteraceae. We also detected the full repertoire of nitrogen cycle-related genes and discovered a lineage of Isosphaeraceae that acquired nitrogen-fixing potential via horizontal gene transfer and might be also involved in nitrification via a metabolic handoff association with Binataceae. We highlight that plant-associated microbial populations in the campos rupestres harbor a genetic repertoire with potential to increase nutrient availability and that the microbiomes of biodiversity hotspots can reveal novel mechanisms of nutrient turnover.


Asunto(s)
Ecosistema , Microbiota , Brasil , Microbiología del Suelo , Biodiversidad , Bacterias/genética , Bacterias/metabolismo , Plantas/metabolismo , Suelo/química , Fósforo/metabolismo , Nitrógeno/metabolismo
11.
BMC Genomics ; 13: 562, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23083487

RESUMEN

BACKGROUND: Synthetic biology allows the development of new biochemical pathways for the production of chemicals from renewable sources. One major challenge is the identification of suitable microorganisms to hold these pathways with sufficient robustness and high yield. In this work we analyzed the genome of the propionic acid producer Actinobacteria Propionibacterium acidipropionici (ATCC 4875). RESULTS: The assembled P. acidipropionici genome has 3,656,170 base pairs (bp) with 68.8% G + C content and a low-copy plasmid of 6,868 bp. We identified 3,336 protein coding genes, approximately 1000 more than P. freudenreichii and P. acnes, with an increase in the number of genes putatively involved in maintenance of genome integrity, as well as the presence of an invertase and genes putatively involved in carbon catabolite repression. In addition, we made an experimental confirmation of the ability of P. acidipropionici to fix CO2, but no phosphoenolpyruvate carboxylase coding gene was found in the genome. Instead, we identified the pyruvate carboxylase gene and confirmed the presence of the corresponding enzyme in proteome analysis as a potential candidate for this activity. Similarly, the phosphate acetyltransferase and acetate kinase genes, which are considered responsible for acetate formation, were not present in the genome. In P. acidipropionici, a similar function seems to be performed by an ADP forming acetate-CoA ligase gene and its corresponding enzyme was confirmed in the proteome analysis. CONCLUSIONS: Our data shows that P. acidipropionici has several of the desired features that are required to become a platform for the production of chemical commodities: multiple pathways for efficient feedstock utilization, ability to fix CO2, robustness, and efficient production of propionic acid, a potential precursor for valuable 3-carbon compounds.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Microbiología Industrial , Propionatos/metabolismo , Propionibacterium/genética , Propionibacterium/metabolismo , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Proteínas Bacterianas/metabolismo , Composición de Base , Secuencia de Bases , Dióxido de Carbono/metabolismo , Redes y Vías Metabólicas , Datos de Secuencia Molecular , Plásmidos , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo
12.
Genome Res ; 19(12): 2258-70, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19812109

RESUMEN

Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (approximately 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.


Asunto(s)
Biocombustibles , Etanol/metabolismo , Genoma Fúngico/genética , Microbiología Industrial , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/genética , Brasil , Cromosomas Fúngicos , ADN de Hongos/análisis , Diploidia , Fermentación , Haploidia , Datos de Secuencia Molecular , Fenotipo , Polimorfismo Genético , Proteínas de Saccharomyces cerevisiae , Análisis de Secuencia de ADN , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
13.
Bioresour Bioprocess ; 9(1): 97, 2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38647773

RESUMEN

An imminent change in the world energy matrix makes it necessary to increase the production of renewable fuels. The United States and Brazil are the world's largest producers, but their production methods are very different, using different raw materials, ground corn and sugarcane juice, respectively. In recent years, strong investments have been made to expand the use of corn in Brazilian ethanol production. The combination of the sugar cane and corn ethanol industries has generated innovations in the sector, such as the "flex" mills, which are traditional sugar cane mills adapted to produce corn ethanol in the sugar cane off-season. Brazil has a portfolio of robust industrial yeasts for sugarcane ethanol production, naturally evolved and selected over the past 50 years. In this work, we analyze for the first time the performance of Brazilian industrial strains (BG-1, CAT-1, PE-2 and SA-1, widely used in sugarcane ethanol production) in corn ethanol production using different stress conditions. Ethanol Red yeast, traditionally used in corn ethanol plants around the world, was used as a control. In terms of tolerance to temperature (35 °C), strains BG-1 and SA-1 stood out. In fermentations with high solids concentration (35%), strain BG-1 reached ethanol contents higher than 19% w/v and had a productivity gain of 5.8% compared to fermentation at 30%. This was the first time that these industrial strains were evaluated using the high solids concentration of 35% and the results point to ways to improve the corn ethanol production process.

14.
Gene ; 828: 146476, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35413393

RESUMEN

Energy cane is a dedicated crop to high biomass production and selected during Saccharum breeding programs to fit specific industrial needs for 2G bioethanol production. Internode elongation is one of the most important characteristics in Saccharum hybrids due to its relationship with crop yield. In this study, we selected the third internode elongation of the energy cane. To characterize this process, we divided the internode into five sections and performed a detailed transcriptome analysis (RNA-Seq) and cell wall characterization. The histological analyses revealed a remarkable gradient that spans from cell division and protoxylem lignification to the internode maturation and complete vascular bundle lignification. RNA-Seq analysis revealed more than 11,000 differentially expressed genes between the sections internal. Gene ontology analyzes showed enriched categories in each section, as well as the most expressed genes in each section, presented different biological processes. We found that the internode elongation and division zones have a large number of unique genes. Evaluated the specific profile of genes related to primary and secondary cell wall formation, cellulose synthesis, hemicellulose, lignin, and growth-related genes. For each section these genes presented different profiles along the internode in elongation in energy cane. The results of this study provide an overview of the regulation of gene expression of an internode elongation in energy cane. Gene expression analysis revealed promising candidates for transcriptional regulation of energy cane lignification and evidence key genes for the regulation of internode development, which can serve as a basis for understanding the molecular regulatory mechanisms that support the growth and development of plants in the Saccahrum complex.


Asunto(s)
Saccharum , Biomasa , Bastones , Regulación de la Expresión Génica de las Plantas , Lignina , Fitomejoramiento , Saccharum/genética , Saccharum/metabolismo
15.
Green Chem ; 24(12): 4845-4858, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35813357

RESUMEN

Wood-feeding termites effectively degrade plant biomass through enzymatic degradation. Despite their high efficiencies, however, individual glycoside hydrolases isolated from termites and their symbionts exhibit anomalously low effectiveness in lignocellulose degradation, suggesting hereto unknown enzymatic activities in their digestome. Herein, we demonstrate that an ancient redox-active enzyme encoded by the lower termite Coptotermes gestroi, a Cu/Zn superoxide dismutase (CgSOD-1), plays a previously unknown role in plant biomass degradation. We show that CgSOD-1 transcripts and peptides are up-regulated in response to an increased level of lignocellulose recalcitrance and that CgSOD-1 localizes in the lumen of the fore- and midguts of C. gestroi together with termite main cellulase, CgEG-1-GH9. CgSOD-1 boosts the saccharification of polysaccharides by CgEG-1-GH9. We show that the boosting effect of CgSOD-1 involves an oxidative mechanism of action in which CgSOD-1 generates reactive oxygen species that subsequently cleave the polysaccharide. SOD-type enzymes constitute a new addition to the growing family of oxidases, ones which are up-regulated when exposed to recalcitrant polysaccharides, and that are used by Nature for biomass degradation.

16.
BMC Genomics ; 12: 307, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21663675

RESUMEN

BACKGROUND: Small RNAs (19-24 nt) are key regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in eukaryotes. Current studies have demonstrated that microRNAs (miRNAs) act in several plant pathways associated with tissue proliferation, differentiation, and development and in response to abiotic and biotic stresses. In order to identify new miRNAs in soybean and to verify those that are possibly water deficit and rust-stress regulated, eight libraries of small RNAs were constructed and submitted to Solexa sequencing. RESULTS: The libraries were developed from drought-sensitive and tolerant seedlings and rust-susceptible and resistant soybeans with or without stressors. Sequencing the library and subsequent analyses detected 256 miRNAs. From this total, we identified 24 families of novel miRNAs that had not been reported before, six families of conserved miRNAs that exist in other plants species, and 22 families previously reported in soybean. We also observed the presence of several isomiRNAs during our analyses. To validate novel miRNAs, we performed RT-qPCR across the eight different libraries. Among the 11 miRNAs analyzed, all showed different expression profiles during biotic and abiotic stresses to soybean. The majority of miRNAs were up-regulated during water deficit stress in the sensitive plants. However, for the tolerant genotype, most of the miRNAs were down regulated. The pattern of miRNAs expression was also different for the distinct genotypes submitted to the pathogen stress. Most miRNAs were down regulated during the fungus infection in the susceptible genotype; however, in the resistant genotype, most miRNAs did not vary during rust attack. A prediction of the putative targets was carried out for conserved and novel miRNAs families. CONCLUSIONS: Validation of our results with quantitative RT-qPCR revealed that Solexa sequencing is a powerful tool for miRNA discovery. The identification of differentially expressed plant miRNAs provides molecular evidence for the possible involvement of miRNAs in the process of water deficit- and rust-stress responses.


Asunto(s)
Glycine max/genética , MicroARNs/genética , Estrés Fisiológico , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , ARN de Planta/genética , ARN de Planta/metabolismo , Análisis de Secuencia de ARN
17.
BMC Plant Biol ; 11: 30, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21303543

RESUMEN

BACKGROUND: Coffee is one of the world's most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. RESULTS: Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the Nestlé-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. CONCLUSION: We present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance.


Asunto(s)
Coffea/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Genoma de Planta , Composición de Base , Análisis por Conglomerados , ADN de Plantas/genética , Biblioteca de Genes , Genes de Plantas , Anotación de Secuencia Molecular , Familia de Multigenes , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
18.
Biotechnol Biofuels ; 14(1): 239, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34915919

RESUMEN

BACKGROUND: Saccharomyces cerevisiae is largely applied in many biotechnological processes, from traditional food and beverage industries to modern biofuel and biochemicals factories. During the fermentation process, yeast cells are usually challenged in different harsh conditions, which often impact productivity. Regarding bioethanol production, cell exposure to acidic environments is related to productivity loss on both first- and second-generation ethanol. In this scenario, indigenous strains traditionally used in fermentation stand out as a source of complex genetic architecture, mainly due to their highly robust background-including low pH tolerance. RESULTS: In this work, we pioneer the use of QTL mapping to uncover the genetic basis that confers to the industrial strain Pedra-2 (PE-2) acidic tolerance during growth at low pH. First, we developed a fluorescence-based high-throughput approach to collect a large number of haploid cells using flow cytometry. Then, we were able to apply a bulk segregant analysis to solve the genetic basis of low pH resistance in PE-2, which uncovered a region in chromosome X as the major QTL associated with the evaluated phenotype. A reciprocal hemizygosity analysis revealed the allele GAS1, encoding a ß-1,3-glucanosyltransferase, as the casual variant in this region. The GAS1 sequence alignment of distinct S. cerevisiae strains pointed out a non-synonymous mutation (A631G) prevalence in wild-type isolates, which is absent in laboratory strains. We further showcase that GAS1 allele swap between PE-2 and a low pH-susceptible strain can improve cell viability on the latter of up to 12% after a sulfuric acid wash process. CONCLUSION: This work revealed GAS1 as one of the main causative genes associated with tolerance to growth at low pH in PE-2. We also showcase how GAS1PE-2 can improve acid resistance of a susceptible strain, suggesting that these findings can be a powerful foundation for the development of more robust and acid-tolerant strains. Our results collectively show the importance of tailored industrial isolated strains in discovering the genetic architecture of relevant traits and its implications over productivity.

19.
BMC Ecol Evol ; 21(1): 84, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990179

RESUMEN

BACKGROUND: Plant pathogenesis related-1 (PR-1) proteins belong to the CAP superfamily and have been characterized as markers of induced defense against pathogens. Moniliophthora perniciosa and Moniliophthora roreri are hemibiotrophic fungi that respectively cause the witches' broom disease and frosty pod rot in Theobroma cacao. Interestingly, a large number of plant PR-1-like genes are present in the genomes of both species and many are up-regulated during the biotrophic interaction. In this study, we investigated the evolution of PR-1 proteins from 22 genomes of Moniliophthora isolates and 16 other Agaricales species, performing genomic investigation, phylogenetic reconstruction, positive selection search and gene expression analysis. RESULTS: Phylogenetic analysis revealed conserved PR-1 genes (PR-1a, b, d, j), shared by many Agaricales saprotrophic species, that have diversified in new PR-1 genes putatively related to pathogenicity in Moniliophthora (PR-1f, g, h, i), as well as in recent specialization cases within M. perniciosa biotypes (PR-1c, k, l) and M. roreri (PR-1n). PR-1 families in Moniliophthora with higher evolutionary rates exhibit induced expression in the biotrophic interaction and positive selection clues, supporting the hypothesis that these proteins accumulated adaptive changes in response to host-pathogen arms race. Furthermore, although previous work showed that MpPR-1 can detoxify plant antifungal compounds in yeast, we found that in the presence of eugenol M. perniciosa differentially expresses only MpPR-1e, k, d, of which two are not linked to pathogenicity, suggesting that detoxification might not be the main function of most MpPR-1. CONCLUSIONS: Based on analyses of genomic and expression data, we provided evidence that the evolution of PR-1 in Moniliophthora was adaptive and potentially related to the emergence of the parasitic lifestyle in this genus. Additionally, we also discuss how fungal PR-1 proteins could have adapted from basal conserved functions to possible roles in fungal pathogenesis.


Asunto(s)
Agaricales , Enfermedades de las Plantas , Agaricales/genética , Humanos , Estilo de Vida , Filogenia
20.
Plant Physiol Biochem ; 167: 504-516, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34425395

RESUMEN

Commercial cultivation of sugarcane is usually carried out by planting culm segments (sett) carrying buds in their internodes. However, this is an inefficient practice due to high sprouting irregularity. In this work, we inspect the first stages of the physiological preparation of the culm for sprouting, trying to identify compounds that actively participate in this process. We compared, during the first 48 h, the metabolic profile of sugarcane against energy cane, a cultivar known to have higher sprouting speed and consistency. In fact, during this short period it was possible to observe that energy cane already had a higher physiological activity than sugarcane, with significant changes in the catabolism of amino acids, increased levels of reducing sugars, lipids and metabolic activity in the phenylpropanoid pathway. On the other hand, sugarcane samples had just begun their activity during this same period, with an increase in the level of glutamate as the most significant change, which may be linked to the strategy of these cultivars to develop their roots before leaves, opposite of what is seen for energy cane. These results contribute to the development of strategies for increasing the efficiency of sprouting in sugarcane.


Asunto(s)
Saccharum , Bastones , Grano Comestible , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA