Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35563013

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy affecting many different body tissues, predominantly skeletal and cardiac muscles and the central nervous system. The expansion of CTG repeats in the DM1 protein-kinase (DMPK) gene is the genetic cause of the disease. The pathogenetic mechanisms are mainly mediated by the production of a toxic expanded CUG transcript from the DMPK gene. With the availability of new knowledge, disease models, and technical tools, much progress has been made in the discovery of altered pathways and in the potential of therapeutic intervention, making the path to the clinic a closer reality. In this review, we describe and discuss the molecular therapeutic strategies for DM1, which are designed to directly target the CTG genomic tract, the expanded CUG transcript or downstream signaling molecules.


Asunto(s)
Distrofia Miotónica , Edición Génica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/metabolismo , Expansión de Repetición de Trinucleótido/genética
2.
Radiol Med ; 126(2): 264-276, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32557107

RESUMEN

Magnetic resonance imaging (MRI) plays a leading role in the non-invasive evaluation of bone marrow (BM). Normal BM pattern depends on the ratio and distribution of yellow and red marrow, which are subject to changes with age, pathologies, and treatments. Neonates show almost entirely red marrow. Over time, yellow marrow conversion takes place with a characteristic sequence leading to a red marrow persistence in proximal metaphyses of long bones. In adults, normal BM is composed of both red (40% water, 40% fat) and yellow marrow (15% water, 80% fat). Due to the higher content of fat, yellow marrow normally appears hyperintense on T1-weighted (T1w) fast spin echo (FSE) sequences and hypo-/iso-intense in short tau inversion recovery (STIR) T2-weighted (T2w); red marrow appears slightly hyperintense in T1w FSE and hyper-/iso-intense in STIR T2w. Pathologic BM has reduced fat and increased water percentages, resulting hypointense in T1w FSE and hyperintense in STIR T2w. In oncologic patients, BM MRI signal largely depends on the treatment (irradiation and/or chemotherapy) and its timing. BM fat and water amount and location in normal red/yellow and pathologic marrow are responsible for different signals in MRI sequences whose knowledge by radiologists may help to differentiate between normal and pathologic findings. Our aim was to discuss and illustrate the MRI of BM physiologic conversion and pathologic reconversion occurring in malignancies and after treatments in cancer patients.


Asunto(s)
Enfermedades de la Médula Ósea/diagnóstico por imagen , Médula Ósea/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Médula Ósea/patología , Médula Ósea/fisiología , Enfermedades de la Médula Ósea/patología , Humanos
3.
Int J Mol Sci ; 19(11)2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30400273

RESUMEN

Circular RNAs (circRNAs) are a class of RNA produced during pre-mRNA splicing that are emerging as new members of the gene regulatory network. In addition to being spliced in a linear fashion, exons of pre-mRNAs can be circularized by use of the 3' acceptor splice site of upstream exons, leading to the formation of circular RNA species. In this way, genetic information can be re-organized, increasing gene expression potential. Expression of circRNAs is developmentally regulated, tissue and cell-type specific, and shared across eukaryotes. The importance of circRNAs in gene regulation is now beginning to be recognized and some putative functions have been assigned to them, such as the sequestration of microRNAs or proteins, the modulation of transcription, the interference with splicing, and translation of small proteins. In accordance with an important role in normal cell biology, circRNA deregulation has been reported to be associated with diseases. Recent evidence demonstrated that circRNAs are highly expressed in striated muscle tissue, both skeletal and cardiac, that is also one of the body tissue showing the highest levels of alternative splicing. Moreover, initial studies revealed altered circRNA expression in diseases involving striated muscle, suggesting important functions of these molecules in the pathogenetic mechanisms of both heart and skeletal muscle diseases. The recent findings in this field will be described and discussed.


Asunto(s)
Empalme Alternativo , Enfermedades Cardiovasculares/genética , Músculo Estriado/fisiología , Distrofia Muscular de Duchenne/genética , ARN/genética , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Exones , Redes Reguladoras de Genes , Humanos , Intrones , MicroARNs/genética , MicroARNs/metabolismo , Desarrollo de Músculos/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Biosíntesis de Proteínas , ARN/clasificación , ARN/metabolismo , Sitios de Empalme de ARN , ARN Circular , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética
4.
Mol Ther Nucleic Acids ; 27: 184-199, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-34976437

RESUMEN

CRISPR/Cas9-mediated therapeutic gene editing is a promising technology for durable treatment of incurable monogenic diseases such as myotonic dystrophies. Gene-editing approaches have been recently applied to in vitro and in vivo models of myotonic dystrophy type 1 (DM1) to delete the pathogenic CTG-repeat expansion located in the 3' untranslated region of the DMPK gene. In DM1-patient-derived cells removal of the expanded repeats induced beneficial effects on major hallmarks of the disease with reduction in DMPK transcript-containing ribonuclear foci and reversal of aberrant splicing patterns. Here, we set out to excise the triplet expansion in a time-restricted and cell-specific fashion to minimize the potential occurrence of unintended events in off-target genomic loci and select for the target cell type. To this aim, we employed either a ubiquitous promoter-driven or a muscle-specific promoter-driven Cas9 nuclease and tetracycline repressor-based guide RNAs. A dual-vector approach was used to deliver the CRISPR/Cas9 components into DM1 patient-derived cells and in skeletal muscle of a DM1 mouse model. In this way, we obtained efficient and inducible gene editing both in proliferating cells and differentiated post-mitotic myocytes in vitro as well as in skeletal muscle tissue in vivo.

5.
Biomedicines ; 10(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009432

RESUMEN

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. Despite available therapeutic interventions, it is very difficult to treat, and a cure is not yet available. The intra-tumoral GBM heterogeneity is a crucial factor contributing to poor clinical outcomes. GBM derives from a small heterogeneous population of cancer stem cells (CSCs). In cancer tissue, CSCs are concentrated within the so-called niches, where they progress from a slowly proliferating phase. CSCs, as most tumor cells, release extracellular vesicles (EVs) into the surrounding microenvironment. To explore the role of EVs in CSCs and GBM tumor cells, we investigated the miRNA and protein content of the small EVs (sEVs) secreted by two GBM-established cell lines and by GBM primary CSCs using omics analysis. Our data indicate that GBM-sEVs are selectively enriched for miRNAs that are known to display tumor suppressor activity, while their protein cargo is enriched for oncoproteins and tumor-associated proteins. Conversely, among the most up-regulated miRNAs in CSC-sEVs, we also found pro-tumor miRNAs and proteins related to stemness, cell proliferation, and apoptosis. Collectively, our findings support the hypothesis that sEVs selectively incorporate different miRNAs and proteins belonging both to fundamental processes (e.g., cell proliferation, cell death, stemness) as well as to more specialized ones (e.g., EMT, membrane docking, cell junction organization, ncRNA processing).

6.
Comput Struct Biotechnol J ; 19: 51-61, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33363709

RESUMEN

Myotonic Dystrophy type 1 (DM1) is an incurable neuromuscular disorder caused by toxic DMPK transcripts that carry CUG repeat expansions in the 3' untranslated region (3'UTR). The intrinsic complexity and lack of crystallographic data makes noncoding RNA regions challenging targets to study in the field of drug discovery. In DM1, toxic transcripts tend to stall in the nuclei forming complex inclusion bodies called foci and sequester many essential alternative splicing factors such as Muscleblind-like 1 (MBNL1). Most DM1 phenotypic features stem from the reduced availability of free MBNL1 and therefore many therapeutic efforts are focused on recovering its normal activity. For that purpose, herein we present pyrido[2,3-d]pyrimidin-7-(8H)-ones, a privileged scaffold showing remarkable biological activity against many targets involved in human disorders including cancer and viral diseases. Their combination with a flexible linker meets the requirements to stabilise DM1 toxic transcripts, and therefore, enabling the release of MBNL1. Therefore, a set of novel pyrido[2,3-d]pyrimidin-7-(8H)-ones derivatives (1a-e) were obtained using click chemistry. 1a exerted over 20% MBNL1 recovery on DM1 toxic RNA activity in primary cell biology studies using patient-derived myoblasts. 1a promising anti DM1 activity may lead to subsequent generations of ligands, highlighting a new affordable treatment against DM1.

7.
Cancers (Basel) ; 12(6)2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575666

RESUMEN

The identification of liquid biomarkers remains a major challenge to improve the diagnosis of melanoma patients with brain metastases. Circulating miRNAs packaged into tumor-secreted small extracellular vesicles (sEVs) contribute to tumor progression. To investigate the release of tumor-secreted miRNAs by brain metastasis, we developed a xenograft model where human metastatic melanoma cells were injected intracranially in nude mice. The comprehensive profiles of both free miRNAs and those packaged in sEVs secreted by the melanoma cells in the plasma demonstrated that most (80%) of the sEV-associated miRNAs were also present in serum EVs from a cohort of metastatic melanomas, included in a publicly available dataset. Remarkably, among them, we found three miRNAs (miR-224-5p, miR-130a-3p and miR-21-5p) in sEVs showing a trend of upregulation during melanoma progression. Our model is proven to be valuable for identifying miRNAs in EVs that are unequivocally secreted by melanoma cells in the brain and could be associated to disease progression.

8.
Sci Rep ; 9(1): 19623, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873117

RESUMEN

Growth and patterning of the cerebellum is compromised if granule cell precursors do not properly expand and migrate. During embryonic and postnatal cerebellar development, the Hedgehog pathway tightly regulates granule cell progenitors to coordinate appropriate foliation and lobule formation. Indeed, granule cells impairment or defects in the Hedgehog signaling are associated with developmental, neurodegenerative and neoplastic disorders. So far, scant and inefficient cellular models have been available to study granule cell progenitors, in vitro. Here, we validated a new culture method to grow postnatal granule cell progenitors as hedgehog-dependent neurospheres with prolonged self-renewal and ability to differentiate into granule cells, under appropriate conditions. Taking advantage of this cellular model, we provide evidence that Ptch1-KO, but not the SMO-M2 mutation, supports constitutive and cell-autonomous activity of the hedgehog pathway.


Asunto(s)
Diferenciación Celular , Cerebelo/metabolismo , Proteínas Hedgehog , Células-Madre Neurales/metabolismo , Transducción de Señal , Receptor Smoothened , Animales , Cerebelo/citología , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
9.
Cancers (Basel) ; 11(2)2019 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-30691222

RESUMEN

The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy. Samples were sequenced using a panel of hotspots and targeted regions of 22 genes commonly involved in CRC. This revealed 51 patients carrying actionable gene mutations, 22 of which carried druggable alterations. These mutations were frequently associated with additional genetic alterations. To take into account this molecular complexity and assisted by an unbiased bioinformatic analysis, we defined three subgroups of patients carrying distinct molecular patterns. We demonstrated these three molecular subgroups are associated with a different response to first-line conventional combination therapies. The best outcome was achieved in patients exclusively carrying mutations on TP53 and/or RAS genes. By contrast, in patients carrying mutations in any of the other genes, alone or associated with mutations of TP53/RAS, the expected response is much worse compared to patients with exclusive TP53/RAS mutations. Additionally, our data indicate that the standard approach has limited efficacy in patients without any mutations in the genes included in the panel. In conclusion, we identified a reliable and easy-to-use approach for a simplified molecular-based stratification of mCRC patients that predicts the efficacy of the first-line conventional combination therapy.

10.
Cell Death Dis ; 9(7): 729, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29955039

RESUMEN

Myotonic dystrophy type 1 (DM1) is a multi-systemic disorder caused by abnormally expanded stretches of CTG DNA triplets in the DMPK gene, leading to mutated-transcript RNA-toxicity. MicroRNAs (miRNAs) are short non-coding RNAs that, after maturation, are loaded onto the RISC effector complex that destabilizes target mRNAs and represses their translation. In DM1 muscle biopsies not only the expression, but also the intracellular localization of specific miRNAs is disrupted, leading to the dysregulation of the relevant mRNA targets. To investigate the functional alterations of the miRNA/target interactions in DM1, we analyzed by RNA-sequencing the RISC-associated RNAs in skeletal muscle biopsies derived from DM1 patients and matched controls. The mRNAs found deregulated in DM1 biopsies were involved in pathways and functions relevant for the disease, such as energetic metabolism, calcium signaling, muscle contraction and p53-dependent apoptosis. Bioinformatic analysis of the miRNA/mRNA interactions based on the RISC enrichment profiles, identified 24 miRNA/mRNA correlations. Following validation in 21 independent samples, we focused on the couple miR-29c/ASB2 because of the role of miR-29c in fibrosis (a feature of late-stage DM1 patients) and of ASB2 in the regulation of muscle mass. Luciferase reporter assay confirmed the direct interaction between miR-29c and ASB2. Moreover, decreased miR-29c and increased ASB2 levels were verified also in immortalized myogenic cells and primary fibroblasts, derived from biopsies of DM1 patients and controls. CRISPR/Cas9-mediated deletion of CTG expansions rescued normal miR-29c and ASB2 levels, indicating a direct link between the mutant repeats and the miRNA/target expression. In conclusion, functionally relevant miRNA/mRNA interactions were identified in skeletal muscles of DM1 patients, highlighting the dysfunction of miR-29c and ASB2.


Asunto(s)
Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Distrofia Miotónica/genética , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Humanos , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
11.
Cell Death Dis ; 9(9): 895, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166519

RESUMEN

MRE11 is a component of the MRE11/RAD50/NBS1 (MRN) complex, whose activity is essential to control faithful DNA replication and to prevent accumulation of deleterious DNA double-strand breaks. In humans, hypomorphic mutations in these genes lead to DNA damage response (DDR)-defective and cancer-prone syndromes. Moreover, MRN complex dysfunction dramatically affects the nervous system, where MRE11 is required to restrain MYCN-dependent replication stress, during the rapid expansion of progenitor cells. MYCN activation, often due to genetic amplification, represents the driving oncogenic event for a number of human tumors, conferring bad prognosis and predicting very poor responses even to the most aggressive therapeutic protocols. This is prototypically exemplified by neuroblastoma, where MYCN amplification occurs in about 25% of the cases. Intriguingly, MRE11 is highly expressed and predicts bad prognosis in MYCN-amplified neuroblastoma. Due to the lack of direct means to target MYCN, we explored the possibility to trigger intolerable levels of replication stress-dependent DNA damage, by inhibiting MRE11 in MYCN-amplified preclinical models. Indeed, either MRE11 knockdown or its pharmacological inhibitor mirin induce accumulation of replication stress and DNA damage biomarkers in MYCN-amplified cells. The consequent DDR recruits p53 and promotes a p53-dependent cell death, as indicated by p53 loss- and gain-of-function experiments. Encapsulation of mirin in nanoparticles allowed its use on MYCN-amplified neuroblastoma xenografts in vivo, which resulted in a sharp impairment of tumor growth, associated with DDR activation, p53 accumulation, and cell death. Therefore, we propose that MRE11 inhibition might be an effective strategy to treat MYCN-amplified and p53 wild-type neuroblastoma, and suggest that targeting replication stress with appropriate tools should be further exploited to tackle MYCN-driven tumors.


Asunto(s)
Proteína Homóloga de MRE11/antagonistas & inhibidores , Proteína Homóloga de MRE11/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/tratamiento farmacológico , Pirimidinonas/farmacología , Tionas/farmacología , Células 3T3 , Células A549 , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN/genética , Femenino , Células HEK293 , Células Hep G2 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neuroblastoma/patología , Pronóstico , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Mol Ther Nucleic Acids ; 9: 337-348, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29246312

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common adult-onset muscular dystrophy, characterized by progressive myopathy, myotonia, and multi-organ involvement. This dystrophy is an inherited autosomal dominant disease caused by a (CTG)n expansion within the 3' untranslated region of the DMPK gene. Expression of the mutated gene results in production of toxic transcripts that aggregate as nuclear foci and sequester RNA-binding proteins, resulting in mis-splicing of several transcripts, defective translation, and microRNA dysregulation. No effective therapy is yet available for treatment of the disease. In this study, myogenic cell models were generated from myotonic dystrophy patient-derived fibroblasts. These cells exhibit typical disease-associated ribonuclear aggregates, containing CUG repeats and muscleblind-like 1 protein, and alternative splicing alterations. We exploited these cell models to develop new gene therapy strategies aimed at eliminating the toxic mutant repeats. Using the CRISPR/Cas9 gene-editing system, the repeat expansions were removed, therefore preventing nuclear foci formation and splicing alterations. Compared with the previously reported strategies of inhibition/degradation of CUG expanded transcripts by various techniques, the advantage of this approach is that affected cells can be permanently reverted to a normal phenotype.

13.
Oncotarget ; 8(61): 103340-103363, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29262566

RESUMEN

Increasing evidence points to a key role played by epithelial-mesenchymal transition (EMT) in cancer progression and drug resistance. In this study, we used wet and in silico approaches to investigate whether EMT phenotypes are associated to resistance to target therapy in a non-small cell lung cancer model system harboring activating mutations of the epidermal growth factor receptor. The combination of different analysis techniques allowed us to describe intermediate/hybrid and complete EMT phenotypes respectively in HCC827- and HCC4006-derived drug-resistant human cancer cell lines. Interestingly, intermediate/hybrid EMT phenotypes, a collective cell migration and increased stem-like ability associate to resistance to the epidermal growth factor receptor inhibitor, erlotinib, in HCC827 derived cell lines. Moreover, the use of three complementary approaches for gene expression analysis supported the identification of a small EMT-related gene list, which may have otherwise been overlooked by standard stand-alone methods for gene expression analysis.

14.
Cancer Res ; 62(4): 1196-204, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11861404

RESUMEN

Vitamin A is required for a number of developmental processes and for the homeostatic maintenance of several adult differentiated tissues and organs. In human neuroblastoma (NB) cells as well as some other tumor types, pharmacological doses of retinoids are able to control growth and induce differentiation in vitro and in vivo. In a search for new genes that are regulated by retinoids and that contribute to the biological effects retinoids have on NB cells, we have isolated five differentially expressed transcripts. Here we report on the characterization of one of them (DD83.1) in NB cell lines. DD83.1 is identical to the human retSDR1, a short chain dehydrogenase/reductase that is thought to regenerate retinol from retinal in the visual cycle. Its expression is strongly, but differently, regulated by retinoids in NB cell lines, and it is widely expressed in human tissues, which suggests that it is involved in a more general retinol metabolic pathway. Both the retinoic acid-dependent and the exogenous expression of retSDR1 in SK-N-AS cells induce the accumulation of retinyl esters, which indicates that it is involved in generating storage forms of retinol in tissues exposed to physiological retinol concentrations. We also show that the human retSDR1 gene, which maps on chromosome 1p36.1, is contained in the DNA fragment deleted in many NB cell lines bearing MYCN amplification but is conserved in a cell line with a small 1p deletion and normal MYCN. Our observations suggest that retSDR1 is a novel regulator of vitamin A metabolism and that its frequent deletion in NB cells bearing MYCN amplification could compromise the sensitivity of those cells to retinol, thereby contributing to cancer development and progression.


Asunto(s)
Oxidorreductasas de Alcohol/biosíntesis , Neuroblastoma/enzimología , Tretinoina/farmacología , Vitamina A/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Cromosomas Humanos Par 1/genética , Inducción Enzimática/efectos de los fármacos , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neuroblastoma/genética , Neuroblastoma/metabolismo , ARN Neoplásico/genética , Receptores de Ácido Retinoico/metabolismo , Células Tumorales Cultivadas
15.
PLoS One ; 10(11): e0143333, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26580964

RESUMEN

Epidermal growth factor receptor (EGFR), member of the human epidermal growth factor receptor (HER) family, plays a critical role in regulating multiple cellular processes including proliferation, differentiation, cell migration and cell survival. Deregulation of the EGFR signaling has been found to be associated with the development of a variety of human malignancies including lung, breast, and ovarian cancers, making inhibition of EGFR the most promising molecular targeted therapy developed in the past decade against cancer. Human non small cell lung cancers (NSCLC) with activating mutations in the EGFR gene frequently experience significant tumor regression when treated with EGFR tyrosine kinase inhibitors (TKIs), although acquired resistance invariably develops. Resistance to TKI treatments has been associated to secondary mutations in the EGFR gene or to activation of additional bypass signaling pathways including the ones mediated by receptor tyrosine kinases, Fas receptor and NF-kB. In more than 30-40% of cases, however, the mechanisms underpinning drug-resistance are still unknown. The establishment of cellular and mouse models can facilitate the unveiling of mechanisms leading to drug-resistance and the development or validation of novel therapeutic strategies aimed at overcoming resistance and enhancing outcomes in NSCLC patients. Here we describe the establishment and characterization of EGFR TKI-resistant NSCLC cell lines and a pilot study on the effects of a combined MET and EGFR inhibitors treatment. The characterization of the erlotinib-resistant cell lines confirmed the association of EGFR TKI resistance with loss of EGFR gene amplification and/or AXL overexpression and/or MET gene amplification and MET receptor activation. These cellular models can be instrumental to further investigate the signaling pathways associated to EGFR TKI-resistance. Finally the drugs combination pilot study shows that MET gene amplification and MET receptor activation are not sufficient to predict a positive response of NSCLC cells to a cocktail of MET and EGFR inhibitors and highlights the importance of identifying more reliable biomarkers to predict the efficacy of treatments in NSCLC patients resistant to EGFR TKI.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Resistencia a Antineoplásicos , Receptores ErbB/antagonistas & inhibidores , Amplificación de Genes , Neoplasias Pulmonares/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Secuencia de Bases , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Concentración 50 Inhibidora , Datos de Secuencia Molecular , Mutación/genética , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Resultado del Tratamiento
16.
Dev Cell ; 35(1): 21-35, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26460945

RESUMEN

Developmental Hedgehog signaling controls proliferation of cerebellar granule cell precursors (GCPs), and its aberrant activation is a leading cause of medulloblastoma. We show here that Hedgehog promotes polyamine biosynthesis in GCPs by engaging a non-canonical axis leading to the translation of ornithine decarboxylase (ODC). This process is governed by AMPK, which phosphorylates threonine 173 of the zinc finger protein CNBP in response to Hedgehog activation. Phosphorylated CNBP increases its association with Sufu, followed by CNBP stabilization, ODC translation, and polyamine biosynthesis. Notably, CNBP, ODC, and polyamines are elevated in Hedgehog-dependent medulloblastoma, and genetic or pharmacological inhibition of this axis efficiently blocks Hedgehog-dependent proliferation of medulloblastoma cells in vitro and in vivo. Together, these data illustrate an auxiliary mechanism of metabolic control by a morphogenic pathway with relevant implications in development and cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proliferación Celular , Proteínas Hedgehog/metabolismo , Meduloblastoma/patología , Neuronas/citología , Ornitina Descarboxilasa/metabolismo , Poliaminas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Apoptosis , Western Blotting , Células Cultivadas , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Inmunoprecipitación , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Desnudos , Células 3T3 NIH , Neuronas/metabolismo , Ornitina Descarboxilasa/genética , Fosforilación , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Gene ; 290(1-2): 193-201, 2002 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12062814

RESUMEN

The cloning and sequencing of complementary DNAs corresponding to the two copies (a and b) of the Xenopus laevis gene for hnRNP E2 is presented. Comparison of the two sequences reveals that while they are somewhat divergent at the nucleotide level, they are very conserved at the amino acid level. The analysis also showed two transcripts of different length (alpha and beta), likely generated by alternative processing. There are indications that either gene copy can generate both type of transcripts. Northern blot analysis in oocytes and developing embryos showed that hnRNP E2 RNA is constantly present and that increases in amount at tadpole stage. A semiquantitative reverse transcriptase polymerase chain reaction analysis performed with RNA from developing embryos showed that long (alpha) transcript accumulation is constant during development, whereas the short one (beta) accumulation increases at later stages, thus determining the observed increase in total RNA. Nucleo-cytoplasm localization experiments indicated that in oocyte hnRNP E2 is exclusively cytoplasmic, whereas in somatic cells it is distributed in both compartments. Comparison of the amino acid sequence of the two X. laevis hnRNP E2 with the corresponding mammalian sequences shows a high homology along the molecule except for the region subjected to alternative splicing, which is completely different. Moreover, there are indications that the homologous of mammalian hnRNP E1 gene, very related to and derived from hnRNP E2 by retrotransposition, is not expressed or even not present in X. laevis, suggesting that mammalian hnRNP E1 gene may have originated after mammal/amphybia divergence.


Asunto(s)
Proteínas de Unión al ADN , Ribonucleoproteínas Nucleares Heterogéneas , Proteínas de Unión al ARN/genética , Factores de Transcripción , Proteínas de Xenopus/genética , Xenopus laevis/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , ADN Complementario/química , ADN Complementario/genética , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Femenino , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Oocitos/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología
18.
Biomed Res Int ; 2014: 503634, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24729974

RESUMEN

The fascinating world of noncoding RNAs has recently come to light, thanks to the development of powerful sequencing technologies, revealing a variety of RNA molecules playing important regulatory functions in most, if not all, cellular processes. Many noncoding RNAs have been implicated in regulatory networks that are determinant for skeletal muscle differentiation and disease. In this review, we outline the noncoding RNAs involved in physiological mechanisms of myogenesis and those that appear dysregulated in muscle dystrophies, also discussing their potential use as disease biomarkers and therapeutic targets.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Modelos Genéticos , Proteínas Musculares/genética , Músculo Esquelético/fisiopatología , Distrofias Musculares/genética , ARN no Traducido/genética , Animales , Humanos
19.
Cell Cycle ; 13(3): 434-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24275942

RESUMEN

CCHC-type zinc finger nucleic acid binding protein (CNBP) is a small conserved protein, which plays a key role in development and disease. Studies in animal models have shown that the absence of CNBP results in severe developmental defects that have been mostly attributed to its ability to regulate c-myc mRNA expression. Functionally, CNBP binds single-stranded nucleic acids and acts as a molecular chaperone, thus regulating both transcription and translation.   In this work we report that in Drosophila melanogaster, CNBP is an essential gene, whose absence causes early embryonic lethality. In contrast to what observed in other species, ablation of CNBP does not affect dMyc mRNA expression, whereas the protein levels are markedly reduced. We demonstrate for the first time that dCNBP regulates dMyc translation through an IRES-dependent mechanism, and that knockdown of dCNBP in the wing territory causes a general reduction of wing size, in keeping with the reported role of dMyc in this region. Consistently, reintroduction of dMyc in CNBP-deficient wing imaginal discs rescues the wing size, further supporting a key role of the CNBP-Myc axis in this context. Collectively, these data show a previously uncharacterized mechanism, whereby, by regulating dMyc IRES-dependent translation, CNBP controls Drosophila wing development. These results may have relevant implications in other species and in pathophysiological conditions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Polirribosomas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Alas de Animales/crecimiento & desarrollo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Células HEK293 , Humanos , Larva/crecimiento & desarrollo , Larva/metabolismo , Datos de Secuencia Molecular , Proteínas de Unión al ARN/genética
20.
PLoS One ; 7(11): e49139, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23152863

RESUMEN

MYCN amplification occurs in about 20-25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neuroblastoma. We recently reported that the apoptosis-sensitive phenotype induced by MYCN is linked to stabilization of p53 and its proapoptotic kinase HIPK2. In MYCN primed neuroblastoma cells, further activation of both HIPK2 and p53 by Nutlin-3 leads to massive apoptosis in vitro and to tumor shrinkage and impairment of metastasis in xenograft models. Here we report that Galectin-3 impairs MYCN-primed and HIPK2-p53-dependent apoptosis in neuroblastoma cells. Galectin-3 is broadly expressed in human neuroblastoma cell lines and tumors and is repressed by MYCN to induce the apoptosis-sensitive phenotype. Despite its reduced levels, Galectin-3 can still exert residual antiapoptotic effects in MYCN amplified neuroblastoma cells, possibly due to its specific subcellular localization. Importantly, Nutlin-3 represses Galectin-3 expression, and this is required for its potent cell killing effect on MYCN amplified cell lines. Our data further characterize the apoptosis-sensitive phenotype induced by MYCN, expand our understanding of the activity of MDM2-p53 antagonists and highlight Galectin-3 as a potential biomarker for the tailored p53 reactivation therapy in patients with high-risk neuroblastomas.


Asunto(s)
Apoptosis , Galectina 3/metabolismo , Imidazoles/farmacología , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Piperazinas/farmacología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Daño del ADN , Galectina 3/genética , Amplificación de Genes , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Modelos Biológicos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/genética , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA