Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
2.
Pediatrics ; 125(4): e727-35, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20231187

RESUMEN

BACKGROUND: Multiple lines of evidence indicate a strong genetic contribution to autism spectrum disorders (ASDs). Current guidelines for clinical genetic testing recommend a G-banded karyotype to detect chromosomal abnormalities and fragile X DNA testing, but guidelines for chromosomal microarray analysis have not been established. PATIENTS AND METHODS: A cohort of 933 patients received clinical genetic testing for a diagnosis of ASD between January 2006 and December 2008. Clinical genetic testing included G-banded karyotype, fragile X testing, and chromosomal microarray (CMA) to test for submicroscopic genomic deletions and duplications. Diagnostic yield of clinically significant genetic changes was compared. RESULTS: Karyotype yielded abnormal results in 19 of 852 patients (2.23% [95% confidence interval (CI): 1.73%-2.73%]), fragile X testing was abnormal in 4 of 861 (0.46% [95% CI: 0.36%-0.56%]), and CMA identified deletions or duplications in 154 of 848 patients (18.2% [95% CI: 14.76%-21.64%]). CMA results for 59 of 848 patients (7.0% [95% CI: 5.5%-8.5%]) were considered abnormal, which includes variants associated with known genomic disorders or variants of possible significance. CMA results were normal in 10 of 852 patients (1.2%) with abnormal karyotype due to balanced rearrangements or unidentified marker chromosome. CMA with whole-genome coverage and CMA with targeted genomic regions detected clinically relevant copy-number changes in 7.3% (51 of 697) and 5.3% (8 of 151) of patients, respectively, both higher than karyotype. With the exception of recurrent deletion and duplication of chromosome 16p11.2 and 15q13.2q13.3, most copy-number changes were unique or identified in only a small subset of patients. CONCLUSIONS: CMA had the highest detection rate among clinically available genetic tests for patients with ASD. Interpretation of microarray data is complicated by the presence of both novel and recurrent copy-number variants of unknown significance. Despite these limitations, CMA should be considered as part of the initial diagnostic evaluation of patients with ASD.


Asunto(s)
Trastornos Generalizados del Desarrollo Infantil/diagnóstico , Trastornos Generalizados del Desarrollo Infantil/genética , Pruebas Genéticas , Adolescente , Niño , Preescolar , Estudios de Cohortes , Femenino , Pruebas Genéticas/métodos , Humanos , Lactante , Cariotipificación/métodos , Masculino , Análisis por Micromatrices/métodos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA