Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(25): 13640-13649, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37307141

RESUMEN

Orange protein (Orp) is a small bacterial metalloprotein of unknown function that harbors a unique molybdenum/copper (Mo/Cu) heterometallic cluster, [S2MoS2CuS2MoS2]3-. In this paper, the performance of Orp as a catalyst for the photocatalytic reduction of protons into H2 has been investigated under visible light irradiation. We report the complete biochemical and spectroscopic characterization of holo-Orp containing the [S2MoS2CuS2MoS2]3- cluster, with docking and molecular dynamics simulations suggesting a positively charged Arg, Lys-containing pocket as the binding site. Holo-Orp exhibits excellent photocatalytic activity, in the presence of ascorbate as the sacrificial electron donor and [Ru(bpy)3]Cl2 as the photosensitizer, for hydrogen evolution with a maximum turnover number of 890 after 4 h irradiation. Density functional theory (DFT) calculations were used to propose a consistent reaction mechanism in which the terminal sulfur atoms are playing a key role in promoting H2 formation. A series of dinuclear [S2MS2M'S2MS2](4n)- clusters, with M = MoVI, WVI and M'(n+) = CuI, FeI, NiI, CoI, ZnII, CdII were assembled in Orp, leading to different M/M'-Orp versions which are shown to display catalytic activity, with the Mo/Fe-Orp catalyst giving a remarkable turnover number (TON) of 1150 after 2.5 h reaction and an initial turnover frequency (TOF°) of 800 h-1 establishing a record among previously reported artificial hydrogenases.

2.
Nucleic Acids Res ; 48(17): 9918-9930, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32785618

RESUMEN

MiaE (2-methylthio-N6-isopentenyl-adenosine37-tRNA monooxygenase) is a unique non-heme diiron enzyme that catalyzes the O2-dependent post-transcriptional allylic hydroxylation of a hypermodified nucleotide 2-methylthio-N6-isopentenyl-adenosine (ms2i6A37) at position 37 of selected tRNA molecules to produce 2-methylthio-N6-4-hydroxyisopentenyl-adenosine (ms2io6A37). Here, we report the in vivo activity, biochemical, spectroscopic characterization and X-ray crystal structure of MiaE from Pseudomonas putida. The investigation demonstrates that the putative pp-2188 gene encodes a MiaE enzyme. The structure shows that Pp-MiaE consists of a catalytic diiron(III) domain with a four alpha-helix bundle fold. A docking model of Pp-MiaE in complex with tRNA, combined with site directed mutagenesis and in vivo activity shed light on the importance of an additional linker region for substrate tRNA recognition. Finally, krypton-pressurized Pp-MiaE experiments, revealed the presence of defined O2 site along a conserved hydrophobic tunnel leading to the diiron active center.


Asunto(s)
Proteínas Bacterianas/química , Dominio Catalítico , Oxigenasas de Función Mixta/química , Pseudomonas putida/enzimología , ARN de Transferencia/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , ARN de Transferencia/química
3.
Proc Natl Acad Sci U S A ; 115(10): E2229-E2237, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29463722

RESUMEN

[NiFe] hydrogenases catalyze the reversible splitting of H2 into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O2, a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha, is able to overcome aerobic inactivation by catalytic reduction of O2 to water. This O2 tolerance relies on a special [4Fe3S] cluster that is capable of releasing two electrons upon O2 attack. Here, the O2 accessibility of the MBH gas tunnel network has been probed experimentally using a "soak-and-freeze" derivatization method, accompanied by protein X-ray crystallography and computational studies. This combined approach revealed several sites of O2 molecules within a hydrophobic tunnel network leading, via two tunnel entrances, to the catalytic center of MBH. The corresponding site occupancies were related to the O2 concentrations used for MBH crystal derivatization. The examination of the O2-derivatized data furthermore uncovered two unexpected structural alterations at the [4Fe3S] cluster, which might be related to the O2 tolerance of the enzyme.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/enzimología , Cupriavidus necator/enzimología , Hidrogenasas/química , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Membrana Celular/química , Membrana Celular/genética , Cristalografía por Rayos X , Cupriavidus necator/química , Cupriavidus necator/genética , Hidrogenasas/genética , Interacciones Hidrofóbicas e Hidrofílicas , Oxígeno/química
4.
J Biol Chem ; 294(19): 7601-7614, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30858174

RESUMEN

Activation of nickel enzymes requires specific accessory proteins organized in multiprotein complexes controlling metal transfer to the active site. Histidine-rich clusters are generally present in at least one of the metallochaperones involved in nickel delivery. The maturation of carbon monoxide dehydrogenase in the proteobacterium Rhodospirillum rubrum requires three accessory proteins, CooC, CooT, and CooJ, dedicated to nickel insertion into the active site, a distorted [NiFe3S4] cluster coordinated to an iron site. Previously, CooJ from R. rubrum (RrCooJ) has been described as a nickel chaperone with 16 histidines and 2 cysteines at its C terminus. Here, the X-ray structure of a truncated version of RrCooJ, combined with small-angle X-ray scattering data and a modeling study of the full-length protein, revealed a homodimer comprising a coiled coil with two independent and highly flexible His tails. Using isothermal calorimetry, we characterized several metal-binding sites (four per dimer) involving the His-rich motifs and having similar metal affinity (KD = 1.6 µm). Remarkably, biophysical approaches, site-directed mutagenesis, and X-ray crystallography uncovered an additional nickel-binding site at the dimer interface, which binds Ni(II) with an affinity of 380 nm Although RrCooJ was initially thought to be a unique protein, a proteome database search identified at least 46 bacterial CooJ homologs. These homologs all possess two spatially separated nickel-binding motifs: a variable C-terminal histidine tail and a strictly conserved H(W/F)X2HX3H motif, identified in this study, suggesting a dual function for CooJ both as a nickel chaperone and as a nickel storage protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Níquel/química , Multimerización de Proteína , Rhodospirillum rubrum/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/genética , Mutagénesis Sitio-Dirigida , Rhodospirillum rubrum/genética
5.
J Synchrotron Radiat ; 27(Pt 3): 844-851, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381789

RESUMEN

ID30A-3 (or MASSIF-3) is a mini-focus (beam size 18 µm × 14 µm) highly intense (2.0 × 1013 photons s-1), fixed-energy (12.81 keV) beamline for macromolecular crystallography (MX) experiments at the European Synchrotron Radiation Facility (ESRF). MASSIF-3 is one of two fixed-energy beamlines sited on the first branch of the canted undulator setup on the ESRF ID30 port and is equipped with a MD2 micro-diffractometer, a Flex HCD sample changer, and an Eiger X 4M fast hybrid photon-counting detector. MASSIF-3 is recommended for collecting diffraction data from single small crystals (≤15 µm in one dimension) or for experiments using serial methods. The end-station has been in full user operation since December 2014, and here its current characteristics and capabilities are described.

6.
J Biol Inorg Chem ; 25(6): 863-874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32865640

RESUMEN

Hydrogenases are metalloenzymes that catalyse both H2 evolution and uptake. They are gas-processing enzymes with deeply buried active sites, so the gases diffuse through channels that connect the active site to the protein surface. The [NiFeSe] hydrogenases are a special class of hydrogenases containing a selenocysteine as a nickel ligand; they are more catalytically active and less O2-sensitive than standard [NiFe] hydrogenases. Characterisation of the channel system of hydrogenases is important to understand how the inhibitor oxygen reaches the active site to cause oxidative damage. To this end, crystals of Desulfovibrio vulgaris Hildenborough [NiFeSe] hydrogenase were pressurized with krypton and oxygen, and a method for tracking labile O2 molecules was developed, for mapping a hydrophobic channel system similar to that of the [NiFe] enzymes as the major route for gas diffusion.


Asunto(s)
Desulfovibrio vulgaris/enzimología , Hidrogenasas/química , Criptón/química , Oxígeno/química , Dominio Catalítico , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Modelos Moleculares , Conformación Proteica
7.
Biophys J ; 113(10): 2199-2206, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29108649

RESUMEN

Internal cavities are crucial for conformational flexibility of proteins and can be mapped through noble gas diffusion and docking. Here we investigate the hydrophobic cavities and tunnel network in neuroglobin (Ngb), a hexacoordinated heme protein likely to be involved in neuroprotection, using crystallography under noble gas pressure, mostly at room temperature. In murine Ngb, a large internal cavity is involved in the heme sliding mechanism to achieve binding of gaseous ligands through coordination to the heme iron. In this study, we report that noble gases are hosted by two major sites within the internal cavity. We propose that these cavities could store oxygen and allow its relay in the heme proximity, which could correspond to NO location in the nitrite-reductase function of Ngb. Thanks to a recently designed pressurization cell using krypton at high pressure, a new gas binding site has been characterized that reveals an alternate pathway for gaseous ligands. A new gas binding site on the proximal side of the heme has also been characterized, using xenon pressure on a Ngb mutant (V140W) that binds CO with a similar rate and affinity to the wild-type, despite a reshaping of the internal cavity. Moreover, this study, to our knowledge, provides new insights into the determinants of the heme sliding mechanism, suggesting that the shift at the beginning of helix G precedes and drives this process.


Asunto(s)
Globinas/química , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas del Tejido Nervioso/química , Gases Nobles , Presión , Globinas/genética , Globinas/metabolismo , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroglobina , Conformación Proteica
8.
Angew Chem Int Ed Engl ; 55(18): 5586-90, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-26913499

RESUMEN

[NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance.


Asunto(s)
Cupriavidus necator/enzimología , Hidrogenasas/química , Dominio Catalítico , Cristalografía por Rayos X , Cupriavidus necator/química , Cupriavidus necator/metabolismo , Hidrogenasas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Oxidación-Reducción , Oxígeno/metabolismo , Conformación Proteica
9.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 11): 2236-47, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26527141

RESUMEN

Superoxide reductase (SOR), which is commonly found in prokaryotic organisms, affords protection from oxidative stress by reducing the superoxide anion to hydrogen peroxide. The reaction is catalyzed at the iron centre, which is highly conserved among the prokaryotic SORs structurally characterized to date. Reported here is the first structure of an SOR from a eukaryotic organism, the protozoan parasite Giardia intestinalis (GiSOR), which was solved at 2.0 Å resolution. By collecting several diffraction data sets at 100 K from the same flash-cooled protein crystal using synchrotron X-ray radiation, photoreduction of the iron centre was observed. Reduction was monitored using an online UV-visible microspectrophotometer, following the decay of the 647 nm absorption band characteristic of the iron site in the glutamate-bound, oxidized state. Similarly to other 1Fe-SORs structurally characterized to date, the enzyme displays a tetrameric quaternary-structure arrangement. As a distinctive feature, the N-terminal loop of the protein, containing the characteristic EKHxP motif, revealed an unusually high flexibility regardless of the iron redox state. At variance with previous evidence collected by X-ray crystallography and Fourier transform infrared spectroscopy of prokaryotic SORs, iron reduction did not lead to dissociation of glutamate from the catalytic metal or other structural changes; however, the glutamate ligand underwent X-ray-induced chemical changes, revealing high sensitivity of the GiSOR active site to X-ray radiation damage.


Asunto(s)
Giardia lamblia/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico/efectos de la radiación , Cristalografía por Rayos X , Giardia lamblia/química , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Conformación Proteica , Alineación de Secuencia , Rayos X
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 15-26, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25615856

RESUMEN

The analysis of structural data obtained by X-ray crystallography benefits from information obtained from complementary techniques, especially as applied to the crystals themselves. As a consequence, optical spectroscopies in structural biology have become instrumental in assessing the relevance and context of many crystallographic results. Since the year 2000, it has been possible to record such data adjacent to, or directly on, the Structural Biology Group beamlines of the ESRF. A core laboratory featuring various spectrometers, named the Cryobench, is now in its third version and houses portable devices that can be directly mounted on beamlines. This paper reports the current status of the Cryobench, which is now located on the MAD beamline ID29 and is thus called the ID29S-Cryobench (where S stands for `spectroscopy'). It also reviews the diverse experiments that can be performed at the Cryobench, highlighting the various scientific questions that can be addressed.


Asunto(s)
Sustancias Macromoleculares/química , Espectrofotometría Ultravioleta/métodos , Espectrometría Raman/métodos , Color , ADN/química , Proteínas/química
11.
Angew Chem Int Ed Engl ; 53(23): 5926-30, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24777646

RESUMEN

Superoxide reductase (SOR), a non-heme mononuclear iron protein that is involved in superoxide detoxification in microorganisms, can be used as an unprecedented model to study the mechanisms of O2 activation and of the formation of high-valent iron-oxo species in metalloenzymes. By using resonance Raman spectroscopy, it was shown that the mutation of two residues in the second coordination sphere of the SOR iron active site, K48 and I118, led to the formation of a high-valent iron-oxo species when the mutant proteins were reacted with H2O2. These data demonstrate that these residues in the second coordination sphere tightly control the evolution and the cleavage of the O-O bond of the ferric iron hydroperoxide intermediate that is formed in the SOR active site.


Asunto(s)
Hierro/química , Oxidorreductasas/química , Espectrometría Raman/métodos , Sitios de Unión
12.
Acta Crystallogr D Struct Biol ; 80(Pt 2): 80-92, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38265873

RESUMEN

This article describes the High-Pressure Freezing Laboratory for Macromolecular Crystallography (HPMX) at the ESRF, and highlights new and complementary research opportunities that can be explored using this facility. The laboratory is dedicated to investigating interactions between macromolecules and gases in crystallo, and finds applications in many fields of research, including fundamental biology, biochemistry, and environmental and medical science. At present, the HPMX laboratory offers the use of different high-pressure cells adapted for helium, argon, krypton, xenon, nitrogen, oxygen, carbon dioxide and methane. Important scientific applications of high pressure to macromolecules at the HPMX include noble-gas derivatization of crystals to detect and map the internal architecture of proteins (pockets, tunnels and channels) that allows the storage and diffusion of ligands or substrates/products, the investigation of the catalytic mechanisms of gas-employing enzymes (using oxygen, carbon dioxide or methane as substrates) to possibly decipher intermediates, and studies of the conformational fluctuations or structure modifications that are necessary for proteins to function. Additionally, cryo-cooling protein crystals under high pressure (helium or argon at 2000 bar) enables the addition of cryo-protectant to be avoided and noble gases can be employed to produce derivatives for structure resolution. The high-pressure systems are designed to process crystals along a well defined pathway in the phase diagram (pressure-temperature) of the gas to cryo-cool the samples according to the three-step `soak-and-freeze method'. Firstly, crystals are soaked in a pressurized pure gas atmosphere (at 294 K) to introduce the gas and facilitate its interactions within the macromolecules. Samples are then flash-cooled (at 100 K) while still under pressure to cryo-trap macromolecule-gas complexation states or pressure-induced protein modifications. Finally, the samples are recovered after depressurization at cryo-temperatures. The final section of this publication presents a selection of different typical high-pressure experiments carried out at the HPMX, showing that this technique has already answered a wide range of scientific questions. It is shown that the use of different gases and pressure conditions can be used to probe various effects, such as mapping the functional internal architectures of enzymes (tunnels in the haloalkane dehalogenase DhaA) and allosteric sites on membrane-protein surfaces, the interaction of non-inert gases with proteins (oxygen in the hydrogenase ReMBH) and pressure-induced structural changes of proteins (tetramer dissociation in urate oxidase). The technique is versatile and the provision of pressure cells and their application at the HPMX is gradually being extended to address new scientific questions.


Asunto(s)
Dióxido de Carbono , Helio , Congelación , Cristalografía por Rayos X , Argón , Proteínas/química , Oxígeno , Metano
13.
Biomolecules ; 13(5)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37238602

RESUMEN

Iron-sulfur (Fe-S) clusters are inorganic prosthetic groups in proteins composed exclusively of iron and inorganic sulfide. These cofactors are required in a wide range of critical cellular pathways. Iron-sulfur clusters do not form spontaneously in vivo; several proteins are required to mobilize sulfur and iron, assemble and traffic-nascent clusters. Bacteria have developed several Fe-S assembly systems, such as the ISC, NIF, and SUF systems. Interestingly, in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), the SUF machinery is the primary Fe-S biogenesis system. This operon is essential for the viability of Mtb under normal growth conditions, and the genes it contains are known to be vulnerable, revealing the Mtb SUF system as an interesting target in the fight against tuberculosis. In the present study, two proteins of the Mtb SUF system were characterized for the first time: Rv1464(sufS) and Rv1465(sufU). The results presented reveal how these two proteins work together and thus provide insights into Fe-S biogenesis/metabolism by this pathogen. Combining biochemistry and structural approaches, we showed that Rv1464 is a type II cysteine-desulfurase enzyme and that Rv1465 is a zinc-dependent protein interacting with Rv1464. Endowed with a sulfurtransferase activity, Rv1465 significantly enhances the cysteine-desulfurase activity of Rv1464 by transferring the sulfur atom from persulfide on Rv1464 to its conserved Cys40 residue. The zinc ion is important for the sulfur transfer reaction between SufS and SufU, and His354 in SufS plays an essential role in this reaction. Finally, we showed that Mtb SufS-SufU is more resistant to oxidative stress than E. coli SufS-SufE and that the presence of zinc in SufU is likely responsible for this improved resistance. This study on Rv1464 and Rv1465 will help guide the design of future anti-tuberculosis agents.


Asunto(s)
Escherichia coli , Mycobacterium tuberculosis , Escherichia coli/metabolismo , Mycobacterium tuberculosis/metabolismo , Cisteína/metabolismo , Zinc/metabolismo , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/genética , Liasas de Carbono-Azufre/metabolismo , Azufre/metabolismo , Hierro/metabolismo
14.
Chem Sci ; 14(38): 10547-10560, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799987

RESUMEN

Protein fold adaptation to novel enzymatic reactions is a fundamental evolutionary process. Cofactor-independent oxygenases degrading N-heteroaromatic substrates belong to the α/ß-hydrolase (ABH) fold superfamily that typically does not catalyze oxygenation reactions. Here, we have integrated crystallographic analyses under normoxic and hyperoxic conditions with molecular dynamics and quantum mechanical calculations to investigate its prototypic 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase (HOD) member. O2 localization to the "oxyanion hole", where catalysis occurs, is an unfavorable event and the direct competition between dioxygen and water for this site is modulated by the "nucleophilic elbow" residue. A hydrophobic pocket that overlaps with the organic substrate binding site can act as a proximal dioxygen reservoir. Freeze-trap pressurization allowed the structure of the ternary complex with a substrate analogue and O2 bound at the oxyanion hole to be determined. Theoretical calculations reveal that O2 orientation is coupled to the charge of the bound organic ligand. When 1-H-3-hydroxy-4-oxoquinaldine is uncharged, O2 binds with its molecular axis along the ligand's C2-C4 direction in full agreement with the crystal structure. Substrate activation triggered by deprotonation of its 3-OH group by the His-Asp dyad, rotates O2 by approximately 60°. This geometry maximizes the charge transfer between the substrate and O2, thus weakening the double bond of the latter. Electron density transfer to the O2(π*) orbital promotes the formation of the peroxide intermediate via intersystem crossing that is rate-determining. Our work provides a detailed picture of how evolution has repurposed the ABH-fold architecture and its simple catalytic machinery to accomplish metal-independent oxygenation.

15.
iScience ; 26(9): 107563, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37664601

RESUMEN

In a scenario where the discovery of new molecules to fight antibiotic resistance is a public health concern, ribosomally synthesized and post-translationally modified peptides constitute a promising alternative. In this context, the Gram-positive human gut symbiont Ruminococcus gnavus E1 produces five sactipeptides, Ruminococcins C1 to C5 (RumC1-C5), co-expressed with two radical SAM maturases. RumC1 has been shown to be effective against various multidrug resistant Gram-positives clinical isolates. Here, after adapting the biosynthesis protocol to obtain the four mature RumC2-5 we then evaluate their antibacterial activities. Establishing first that both maturases exhibit substrate tolerance, we then observed a variation in the antibacterial efficacy between the five isoforms. We established that all RumCs are safe for humans with interesting multifunctionalities. While no synergies where observed for the five RumCs, we found a synergistic action with conventional antibiotics targeting the cell wall. Finally, we identified crucial residues for antibacterial activity of RumC isoforms.

16.
Biochim Biophys Acta ; 1814(6): 750-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20691814

RESUMEN

Raman spectroscopy is a powerful technique that, in recent years, has been successfully coupled to X-ray crystallography for the analysis of biological macromolecular systems. The complementarity between both techniques is illustrated at multiple stages, including sample preparation, data collection and structural interpretation with a mechanistic perspective. The current state of instrumentation is described, focusing on synchrotron based setups. Present and future applications of Raman microspectrophotometry are reviewed with reference to recent examples dealing with metallo-, photosensitive-, and redox-proteins. The added value of Raman microspectrophotometry to assess X-radiation damage is discussed, and its applicability to investigate crystalline DNA molecules is also emphasized. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.


Asunto(s)
Cristalografía por Rayos X/métodos , Microespectrofotometría/métodos , Espectrometría Raman/métodos , Cristalografía por Rayos X/instrumentación , Microespectrofotometría/instrumentación , Modelos Moleculares , Ácidos Nucleicos/química , Proteínas/química , Espectrometría Raman/instrumentación , Sincrotrones
17.
J Am Chem Soc ; 134(43): 18015-21, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23025285

RESUMEN

KillerRed (KR) is a red fluorescent protein recognized as an efficient genetically encoded photosensitizer. KR generates reactive oxygen species via a complex process of photoreactions, ending up in photobleaching, the mechanism of which remains obscure. In order to clarify these mechanisms, we focus on a single mutant V44A (A44-KR) exhibiting the solely green component of KR. We report on the laser-induced structural transformations of A44-KR at cryogenic temperature, which we have investigated by combining UV-vis fluorescence/absorption spectroscopy with X-ray crystallography. Like the well-known GFP, A44-KR possesses a mixture of protonated (A) absorbing at 397 and deprotonated (B) absorbing at 515 nm chromophores, which are stressed by intense prolonged violet and blue laser sources. Both illuminations directly drive the B-chromophores toward a bleached trans isomerized form. A-type chromophores are sensitive only to violet illumination and are phototransformed either into a deprotonated green fluorescent form by decarboxylation of E218 or into a bleached form with a disordered p-hydroxybenzylidene. In crystallo spectroscopy at cryo-temperature allowed the identification and dissection of an exhaustive scheme of intermediates and end-products resulting from the phototransformation of A44-KR. This constitutes a framework for understanding the photochemistry of the photosensitizer KillerRed.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Cristalografía por Rayos X , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Modelos Moleculares , Procesos Fotoquímicos , Espectrofotometría Ultravioleta , Rayos Ultravioleta
18.
Breast Cancer Res Treat ; 131(2): 517-25, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22037787

RESUMEN

The aim of this study was to prospectively evaluate the predictive value of (18)F-fluorodeoxyglucose-positron emission tomography (FDG-PET) to detect the absence of pathological response to preoperative chemotherapy in patients (pts) with breast cancer. 63 consecutive pts with non-metastatic, non-inflammatory breast cancer, eligible for neoadjuvant chemotherapy (3 FEC 100 followed by 3 Docetaxel) were enrolled. FDG-PET was performed just before the first as well as before the second course. Metabolic activity (tumour FDG uptake) was measured by standardised uptake value (SUV(max)). Pts were classified as non-responders (NR) when the decrease of SUV(max) in the primary tumour was less than 15% at the time of the second PET (EORTC 1999 criteria). The metabolic response in FDG-PET was correlated with WHO criteria (clinical evaluation and ultrasound and/or mammography) evaluated after three cycles, pathological complete response (pCR) after surgery (according to Sataloff classification) and 4-year relapse-free survival (RFS). The mean SUV(max) decrease according to histological response was -52 ± 21% in case of pCR (Sataloff A) and 25 ± 34% in other cases (Sataloff B + C + D). Out of the 16 pts with no PET response (SUV decrease less than 15%), only one had a clinical response after the third cycle, and no pCR was observed. The 4-year RFS rate was significantly longer for metabolic responders than for NR (respectively, 85 vs. 44%; P = 0.01). This prospective study shows that a decrease in the SUV of less than 15% after the first chemotherapy course is a very potent predictor for failure of neoadjuvant chemotherapy, especially of pCR. It is interesting to note that this was shown despite the fact that the chemotherapy regimen was changed after the third course.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Fluorodesoxiglucosa F18 , Terapia Neoadyuvante , Tomografía de Emisión de Positrones , Adulto , Anciano , Neoplasias de la Mama/mortalidad , Femenino , Humanos , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia , Insuficiencia del Tratamiento
19.
Acta Crystallogr D Struct Biol ; 78(Pt 2): 162-173, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102882

RESUMEN

The stability of the tetrameric enzyme urate oxidase in complex with excess of 8-azaxanthine was investigated either under high hydrostatic pressure per se or under a high pressure of argon. The active site is located at the interface of two subunits, and the catalytic activity is directly related to the integrity of the tetramer. This study demonstrates that applying pressure to a protein-ligand complex drives the thermodynamic equilibrium towards ligand saturation of the complex, revealing a new binding site. A transient dimeric intermediate that occurs during the pressure-induced dissociation process was characterized under argon pressure and excited substates of the enzyme that occur during the catalytic cycle can be trapped by pressure. Comparison of the different structures under pressure infers an allosteric role of the internal hydrophobic cavity in which argon is bound, since this cavity provides the necessary flexibility for the active site to function.


Asunto(s)
Urato Oxidasa , Argón , Sitios de Unión , Presión Hidrostática , Ligandos , Urato Oxidasa/química , Urato Oxidasa/metabolismo
20.
Commun Biol ; 5(1): 360, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422073

RESUMEN

In this work we examine how small hydrophobic molecules such as inert gases interact with membrane proteins (MPs) at a molecular level. High pressure atmospheres of argon and krypton were used to produce noble gas derivatives of crystals of three well studied MPs (two different proton pumps and a sodium light-driven ion pump). The structures obtained using X-ray crystallography showed that the vast majority of argon and krypton binding sites were located on the outer hydrophobic surface of the MPs - a surface usually accommodating hydrophobic chains of annular lipids (which are known structural and functional determinants for MPs). In conformity with these results, supplementary in silico molecular dynamics (MD) analysis predicted even greater numbers of argon and krypton binding positions on MP surface within the bilayer. These results indicate a potential importance of such interactions, particularly as related to the phenomenon of noble gas-induced anaesthesia.


Asunto(s)
Anestésicos , Criptón , Argón/química , Argón/farmacología , Cristalografía por Rayos X , Criptón/química , Criptón/metabolismo , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA