Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31732569

RESUMEN

Human viruses are ubiquitous contaminants in surface waters, where they can persist over extended periods of time. Among the factors governing their environmental persistence, the control (removal or inactivation) by microorganisms remains poorly understood. Here, we determined the contribution of indigenous bacteria and protists to the decay of human viruses in surface waters. Incubation of echovirus 11 (E11) in freshwater from Lake Geneva and seawater from the Mediterranean Sea led to a 2.5-log10 reduction in the infectious virus concentration within 48 h at 22°C, whereas E11 was stable in sterile controls. The observed virus reduction was attributed to the action of both bacteria and protists in the biologically active matrices. The effect of microorganisms on viruses was temperature dependent, with a complete inhibition of microbial virus control in lake water at temperatures of ≤16°C. Among three protist isolates tested (Paraphysomonas sp., Uronema marinum, and Caecitellus paraparvulus), Caecitellus paraparvulus was particularly efficient at controlling E11 (2.1-log10 reduction over 4 days with an initial protist concentration of 103 cells ml-1). In addition, other viruses (human adenovirus type 2 and bacteriophage H6) exhibited different grazing kinetics than E11, indicating that the efficacy of antiviral action also depended on the type of virus. In conclusion, indigenous bacteria and protists in lake water and seawater can modulate the persistence of E11. These results pave the way for further research to understand how microorganisms control human viral pathogens in aquatic ecosystems and to exploit this process as a treatment solution to enhance microbial water safety.IMPORTANCE Waterborne human viruses can persist in the environment, causing a risk to human health over long periods of time. In this work, we demonstrate that in both freshwater and seawater environments, indigenous bacteria and protists can graze on waterborne viruses and thereby reduce their persistence. We furthermore demonstrate that the efficiency of the grazing process depends on temperature, virus type, and protist species. These findings may facilitate the design of biological methods for the disinfection of water and wastewater.


Asunto(s)
Cadena Alimentaria , Lagos , Viabilidad Microbiana , Virosis/virología , Fenómenos Fisiológicos de los Virus , Enfermedades Transmitidas por el Agua/virología , Océano Atlántico , Fenómenos Fisiológicos Bacterianos , Chrysophyta/fisiología , Lagos/microbiología , Lagos/parasitología , Lagos/virología , Mar Mediterráneo , Oligohimenóforos/fisiología , Agua de Mar/microbiología , Agua de Mar/parasitología , Agua de Mar/virología , España , Especificidad de la Especie , Estramenopilos/fisiología , Suiza , Virus/clasificación
2.
Environ Sci Technol ; 54(18): 11292-11300, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32875801

RESUMEN

Sunlight, temperature, and microbial grazing are among the environmental factors promoting the inactivation of viral pathogens in surface waters. Globally, these factors vary across time and space. The persistence of viral pathogens, and ultimately their ecology and dispersion, hinges on their ability to withstand the environmental conditions encountered. To understand how virus populations evolve under changing environmental conditions, we experimentally adapted echovirus 11 (E11) to four climate regimes. Specifically, we incubated E11 in lake water at 10 and 30 °C and in the presence and absence of sunlight. Temperature was the main driver of adaptation, resulting in an increased thermotolerance of the 30 °C adapted populations, whereas the 10 °C adapted strains were rapidly inactivated at higher temperatures. This finding is consistent with a source-sink model in which strains emerging in warm climates can persist in temperate regions, but not vice versa. A microbial risk assessment revealed that the enhanced thermotolerance increases the length of time in which there is an elevated probability of illness associated with swimming in contaminated water. Notably, 30 °C-adapted viruses also exhibited an increased tolerance toward disinfection by free chlorine. Viruses adapting to warm environments may thus become harder to eliminate by common disinfection strategies.


Asunto(s)
Enterovirus , Virus , Cloro , Desinfección , Enterovirus Humano B , Humanos
3.
Environ Sci Technol ; 51(18): 10746-10755, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28837336

RESUMEN

Waterborne viruses can exhibit resistance to common water disinfectants, yet the mechanisms that allow them to tolerate disinfection are poorly understood. Here, we generated echovirus 11 (E11) with resistance to chlorine dioxide (ClO2) by experimental evolution, and we assessed the associated genotypic and phenotypic traits. ClO2 resistance emerged after E11 populations were repeatedly reduced (either by ClO2-exposure or by dilution) and then regrown in cell culture. The resistance was linked to an improved capacity of E11 to bind to its host cells, which was further attributed to two potential causes: first, the resistant E11 populations possessed mutations that caused amino acid substitutions from ClO2-labile to ClO2-stable residues in the viral proteins, which likely increased the chemical stability of the capsid toward ClO2. Second, resistant E11 mutants exhibited the capacity to utilize alternative cell receptors for host binding. Interestingly, the emergence of ClO2 resistance resulted in an enhanced replicative fitness compared to the less resistant starting population. Overall this study contributes to a better understanding of the mechanism underlying disinfection resistance in waterborne viruses, and processes that drive resistance development.


Asunto(s)
Compuestos de Cloro , Enterovirus Humano B , Desinfectantes , Desinfección , Óxidos , Virus , Agua , Microbiología del Agua
4.
Appl Environ Microbiol ; 82(1): 279-88, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26497451

RESUMEN

Solar disinfection (SODIS) of drinking water in polyethylene terephthalate (PET) bottles is a simple, efficient point-of-use technique for the inactivation of many bacterial pathogens. In contrast, the efficiency of SODIS against viruses is not well known. In this work, we studied the inactivation of bacteriophages (MS2 and ϕX174) and human viruses (echovirus 11 and adenovirus type 2) by SODIS. We conducted experiments in PET bottles exposed to (simulated) sunlight at different temperatures (15, 22, 26, and 40°C) and in water sources of diverse compositions and origins (India and Switzerland). Good inactivation of MS2 (>6-log inactivation after exposure to a total fluence of 1.34 kJ/cm(2)) was achieved in Swiss tap water at 22°C, while less-efficient inactivation was observed in Indian waters and for echovirus (1.5-log inactivation at the same fluence). The DNA viruses studied, ϕX174 and adenovirus, were resistant to SODIS, and the inactivation observed was equivalent to that occurring in the dark. High temperatures enhanced MS2 inactivation substantially; at 40°C, 3-log inactivation was achieved in Swiss tap water after exposure to a fluence of only 0.18 kJ/cm(2). Overall, our findings demonstrate that SODIS may reduce the load of single-stranded RNA (ssRNA) viruses, such as echoviruses, particularly at high temperatures and in photoreactive matrices. In contrast, complementary measures may be needed to ensure efficient inactivation during SODIS of DNA viruses resistant to oxidation.


Asunto(s)
Desinfección/métodos , Agua Potable/virología , Tereftalatos Polietilenos , Luz Solar , Inactivación de Virus , Adenoviridae/fisiología , Adenoviridae/efectos de la radiación , Colifagos/fisiología , Colifagos/efectos de la radiación , Virus ADN/efectos de la radiación , Desinfección/estadística & datos numéricos , Enterovirus Humano B/fisiología , Enterovirus Humano B/efectos de la radiación , Humanos , India , Suiza , Temperatura , Rayos Ultravioleta , Carga Viral/efectos de la radiación , Purificación del Agua/métodos
5.
Environ Sci Technol ; 50(24): 13520-13528, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27709908

RESUMEN

Common water disinfectants like chlorine have been reported to select for resistant viruses, yet little attention has been devoted to characterizing disinfection resistance. Here, we investigated the resistance of MS2 coliphage to inactivation by chlorine dioxide (ClO2). ClO2 inactivates MS2 by degrading its structural proteins, thereby disrupting the ability of MS2 to attach to and infect its host. ClO2-resistant virus populations emerged not only after repeated cycles of ClO2 disinfection followed by regrowth but also after dilution-regrowth cycles in the absence of ClO2. The resistant populations exhibited several fixed mutations which caused the substitution of ClO2-labile by ClO2-stable amino acids. On a phenotypic level, these mutations resulted in a more stable host binding during inactivation compared to the wild-type, thus resulting in a greater ability to maintain infectivity. This conclusion was supported by cryo-electron microscopy reconstruction of the virus particle, which demonstrated that most structural modification occurred in the putative A protein, an important binding factor. Resistance was specific to the inactivation mechanism of ClO2 and did not result in significant cross-resistance to genome-damaging disinfectants. Overall, our data indicate that resistant viruses may emerge even in the absence of ClO2 pressure but that they can be inactivated by other common disinfectants.


Asunto(s)
Compuestos de Cloro , Desinfección , Cloro , Colifagos , Desinfectantes , Óxidos
6.
J Environ Manage ; 159: 58-67, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26046988

RESUMEN

Conventional wastewater treatment does not completely remove and/or inactive viruses; consequently, viruses excreted by the population can be detected in the environment. This study was undertaken to investigate the distribution and seasonality of human viruses and faecal indicator bacteria (FIB) in a river catchment located in a typical Mediterranean climate region and to discuss future trends in relation to climate change. Sample matrices included river water, untreated and treated wastewater from a wastewater treatment plant within the catchment area, and seawater from potentially impacted bathing water. Five viruses were analysed in the study. Human adenovirus (HAdV) and JC polyomavirus (JCPyV) were analysed as indicators of human faecal contamination of human pathogens; both were reported in urban wastewater (mean values of 10(6) and 10(5) GC/L, respectively), river water (10(3) and 10(2) GC/L) and seawater (10(2) and 10(1) GC/L). Human Merkel Cell polyomavirus (MCPyV), which is associated with Merkel Cell carcinoma, was detected in 75% of the raw wastewater samples (31/37) and quantified by a newly developed quantitative polymerase chain reaction (qPCR) assay with mean concentrations of 10(4) GC/L. This virus is related to skin cancer in susceptible individuals and was found in 29% and 18% of river water and seawater samples, respectively. Seasonality was only observed for norovirus genogroup II (NoV GGII), which was more abundant in cold months with levels up to 10(4) GC/L in river water. Human hepatitis E virus (HEV) was detected in 13.5% of the wastewater samples when analysed by nested PCR (nPCR). Secondary biological treatment (i.e., activated sludge) and tertiary sewage disinfection including chlorination, flocculation and UV radiation removed between 2.22 and 4.52 log10 of the viral concentrations. Climate projections for the Mediterranean climate areas and the selected river catchment estimate general warming and changes in precipitation distribution. Persistent decreases in precipitation during summer can lead to a higher presence of human viruses because river and sea water present the highest viral concentrations during warmer months. In a global context, wastewater management will be the key to preventing environmental dispersion of human faecal pathogens in future climate change scenarios.


Asunto(s)
Heces/virología , Ríos/virología , Contaminación del Agua/prevención & control , Cambio Climático , Heces/microbiología , Floculación , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/aislamiento & purificación , Humanos , Región Mediterránea , Poliomavirus de Células de Merkel/genética , Poliomavirus de Células de Merkel/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Estaciones del Año , Agua de Mar/virología , Sensibilidad y Especificidad , España , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/virología , Microbiología del Agua
7.
J Water Health ; 12(3): 436-42, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25252347

RESUMEN

Hepatitis E virus (HEV) is transmitted via the fecal-oral route and has been recognized as a common source of large waterborne outbreaks involving contaminated water in developing countries. Thus, there is the need to produce experimental data on the disinfection kinetics of HEV by chlorine in water samples with diverse levels of fecal contamination. Here, the inactivation of HEV and human adenovirus C serotype 2 (HAdV2), used as a reference virus, was monitored using immunofluorescence and quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays. HEV has been shown to be susceptible to chlorine disinfection and presented equivalent kinetics to human adenoviruses. The C(t) values observed for a 2-log reduction of HEV were 0.41 in buffered demand-free water and 11.21 mg/L × min in the presence of 1% sewage. The results indicate that the inactivation kinetics of HEV and HAdV2 are equivalent and support the use of chlorine disinfection as an effective strategy to control HEV waterborne transmission.


Asunto(s)
Adenovirus Humanos/efectos de los fármacos , Cloro/farmacología , Desinfectantes/farmacología , Desinfección/métodos , Virus de la Hepatitis E/efectos de los fármacos , Purificación del Agua/métodos , Adenovirus Humanos/fisiología , Técnica del Anticuerpo Fluorescente , Virus de la Hepatitis E/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Aguas del Alcantarillado/virología , Inactivación de Virus
8.
Front Microbiol ; 14: 1295193, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169808

RESUMEN

Background: Temperate subalpine lakes recovering from eutrophication in central Europe are experiencing harmful blooms due to the proliferation of Planktothrix rubescens, a potentially toxic cyanobacteria. To optimize the management of cyanobacteria blooms there is the need to better comprehend the combination of factors influencing the diversity and dominance of cyanobacteria and their impact on the lake's ecology. The goal of this study was to characterize the diversity and seasonal dynamics of cyanobacteria communities found in a water column of Lake Geneva, as well as the associated changes on bacterioplankton abundance and composition. Methods: We used 16S rRNA amplicon high throughput sequencing on more than 200 water samples collected from surface to 100 meters deep monthly over 18 months. Bacterioplankton abundance was determined by quantitative PCR and PICRUSt predictions were used to explore the functional pathways present in the community and to calculate functional diversity indices. Results: The obtained results confirmed that the most dominant cyanobacteria in Lake Geneva during autumn and winter was Planktothrix (corresponding to P. rubescens). Our data also showed an unexpectedly high relative abundance of picocyanobacterial genus Cyanobium, particularly during summertime. Multidimensional scaling of Bray Curtis dissimilarity revealed that the dominance of P. rubescens was coincident with a shift in the bacterioplankton community composition and a significant decline in bacterioplankton abundance, as well as a temporary reduction in the taxonomic and PICRUSt2 predicted functional diversity. Conclusion: Overall, this study expands our fundamental understanding of the seasonal dynamics of cyanobacteria communities along a vertical column in Lake Geneva and the ecology of P. rubescens, ultimately contributing to improve our preparedness against the potential occurrence of toxic blooms in the largest lake of western Europe.

9.
Appl Environ Microbiol ; 78(20): 7496-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22904047

RESUMEN

Poultry farming may introduce pathogens into the environment and food chains. High concentrations of chicken/turkey parvoviruses were detected in chicken stools and slaughterhouse and downstream urban wastewaters by applying new PCR-based specific detection and quantification techniques. Our results confirm that chicken/turkey parvoviruses may be useful viral indicators of poultry fecal contamination.


Asunto(s)
Pollos/virología , Microbiología Ambiental , Monitoreo del Ambiente/métodos , Heces/virología , Parvovirus/aislamiento & purificación , Pavos/virología , Carga Viral/métodos , Animales , ADN Viral/genética , Datos de Secuencia Molecular , Parvovirus/genética , Análisis de Secuencia de ADN
10.
Appl Environ Microbiol ; 78(18): 6450-7, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22773637

RESUMEN

Viruses excreted by humans affect the commercial and recreational use of coastal water. Shellfish produced in contaminated waters have been linked to many episodes and outbreaks of viral gastroenteritis, as well as other food-borne diseases worldwide. The risk can be reduced by appropriate treatment following harvesting and by depuration. The kinetics of inactivation of murine norovirus 1 and human adenovirus 2 in natural and artificial seawater by free available chlorine was studied by quantifying genomic copies (GC) using quantitative PCR and infectious viral particles (PFU). Human JC polyomavirus Mad4 kinetics were evaluated by quantitative PCR. DNase or RNase were used to eliminate free genomes and assess potential viral infectivity when molecular detection was performed. At 30 min of assay, human adenovirus 2 showed 2.6- and 2.7-log(10) GC reductions and a 2.3- and 2.4-log(10) PFU reductions in natural and artificial seawater, respectively, and infectious viral particles were still observed at the end of the assay. When DNase was used prior to the nucleic acid extraction the kinetic of inactivation obtained by quantitative PCR was statistically equivalent to the one observed by infectivity assays. For murine norovirus 1, 2.5, and 3.5-log(10) GC reductions were observed in natural and artificial seawater, respectively, while no viruses remained infectious after 30 min of contact with chlorine. Regarding JC polyomavirus Mad4, 1.5- and 1.1-log(10) GC reductions were observed after 30 min of contact time. No infectivity assays were conducted for this virus. The results obtained provide data that might be applicable to seawater used in shellfish depuration.


Asunto(s)
Adenovirus Humanos/efectos de los fármacos , Cloro/farmacología , Desinfectantes/farmacología , Virus JC/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Norovirus/efectos de los fármacos , Agua de Mar/virología , Animales , Humanos , Ratones , Reacción en Cadena de la Polimerasa , Factores de Tiempo , Carga Viral
11.
J Water Health ; 9(3): 515-24, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21976198

RESUMEN

Hepatitis E virus (HEV) is a common cause of water-borne acute hepatitis in areas with poor sanitation. In 2004 an outbreak of HEV infection affected around 2,000 people in Eastern Chad (Dar Sila). This paper describes the decrease in the incidence of acute jaundice syndrome (AJS) from 2004 until 2009 when a mean incidence of 0.48 cases/1,000 people/year was recorded in the region. Outbreaks of AJS were identified in some of the camps in 2007 and 2008. Moreover, water samples from drinking water sources were screened for human adenoviruses considered as viral indicators and for hepatitis A virus and HEV. Screening of faecal samples from donkeys for HEV gave negative results. Some of the samples were also analysed for faecal coliforms showing values before disinfection treatment between 3 and >50 colony forming units per 100 mL. All water samples tested were negative for HEV and HAV; however, the presence of low levels of human adenoviruses in 4 out of 16 samples analysed indicates possible human faecal contamination of groundwater. Consequently, breakdowns in the treatment of drinking water and/or increased excretion of hepatitis viruses, which could be related to the arrival of a new population, could spread future outbreaks through drinking water.


Asunto(s)
Ictericia/epidemiología , Ictericia/virología , Microbiología del Agua , Adenoviridae/genética , Adenoviridae/aislamiento & purificación , Animales , Chad/epidemiología , Bases de Datos de Ácidos Nucleicos , Brotes de Enfermedades , Equidae , Heces/virología , Virus de la Hepatitis A/aislamiento & purificación , Virus de la Hepatitis E/aislamiento & purificación , Humanos , Incidencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Aguas del Alcantarillado/virología
12.
Virol J ; 7: 141, 2010 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-20584272

RESUMEN

Recently, three new polyomaviruses (KI, WU and Merkel cell polyomavirus) have been reported to infect humans. It has also been suggested that lymphotropic polyomavirus, a virus of simian origin, infects humans. KI and WU polyomaviruses have been detected mainly in specimens from the respiratory tract while Merkel cell polyomavirus has been described in a very high percentage of Merkel cell carcinomas. The distribution, excretion level and transmission routes of these viruses remain unknown.Here we analyzed the presence and characteristics of newly described human polyomaviruses in urban sewage and river water in order to assess the excretion level and the potential role of water as a route of transmission of these viruses. Nested-PCR assays were designed for the sensitive detection of the viruses studied and the amplicons obtained were confirmed by sequencing analysis. The viruses were concentrated following a methodology previously developed for the detection of JC and BK human polyomaviruses in environmental samples. JC polyomavirus and human adenoviruses were used as markers of human contamination in the samples. Merkel cell polyomavirus was detected in 7/8 urban sewage samples collected and in 2/7 river water samples. Also one urine sample from a pregnant woman, out of 4 samples analyzed, was positive for this virus. KI and WU polyomaviruses were identified in 1/8 and 2/8 sewage samples respectively. The viral strains detected were highly homologous with other strains reported from several other geographical areas. Lymphotropic polyomavirus was not detected in any of the 13 sewage neither in 9 biosolid/sludge samples analyzed.This is the first description of a virus isolated from sewage and river water with a strong association with cancer. Our data indicate that the Merkel cell polyomavirus is prevalent in the population and that it may be disseminated through the fecal/urine contamination of water. The procedure developed may constitute a useful tool for studying the excreted strains, prevalence and transmission of these recently described polyomaviruses.


Asunto(s)
Contaminación Ambiental/análisis , Infecciones por Polyomavirus/virología , Poliomavirus/aislamiento & purificación , Aguas del Alcantarillado/virología , Humanos , Datos de Secuencia Molecular , Filogenia , Poliomavirus/clasificación , Poliomavirus/genética , Ríos/virología , Salud Urbana
13.
J Water Health ; 8(2): 346-54, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20154397

RESUMEN

The aim of the study was to analyse the evolution of the prevalence of HAV and HEV in the population of eastern Spain by analysing the viruses excreted in urban sewage. Raw urban sewage samples were collected and analysed during several years using RT-PCR techniques and sequencing analysis. Two limiting regions were analysed, one of them having implemented HAV vaccination programs. Acute symptomatic HEV cases were also examined. Results were compared with those from previous studies in the area using identical methodology. The percentage of positive HAV samples in urban sewage fell from 57.4% to 3.1% in 5-10 years in the two studied areas in Spain. Around 30% of the urban sewage samples were positive for HEV in the absence of agricultural sources of contamination. HEV RNA was also detected in four clinical cases of acute hepatitis. The dramatic reduction in the presence of HAV in raw urban sewage observed in eastern Spain could be most likely related to the general improvement in sanitation. However, these improvements would not have an equivalent effect on the circulation of HEV and this observation could be explained by the presence of animal reservoirs for HEV, which act as external sources of infections.


Asunto(s)
Virus de la Hepatitis A/aislamiento & purificación , Virus de la Hepatitis E/aislamiento & purificación , Aguas del Alcantarillado/virología , Genes Virales , Hepatitis A/epidemiología , Virus de la Hepatitis A/genética , Hepatitis E/epidemiología , Virus de la Hepatitis E/genética , Humanos , Prevalencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , España/epidemiología , Población Urbana
14.
Sci Rep ; 9(1): 10042, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296895

RESUMEN

In developing countries, the waterborne transmission of hepatitis E virus (HEV), caused by HEV genotypes 1 (HEV-1) and 2 (HEV-2), leads to the onset of large recurrent outbreaks. HEV infections are of particular concern among pregnant women, due to very high mortality rates (up to 70%). Unfortunately, good understanding of the factors that trigger the occurrence of HEV epidemics is currently lacking; therefore, anticipating the onset of an outbreak is yet not possible. In order to map the geographical regions at higher risk of HEV epidemics and the conditions most favorable for the transmission of the virus, we compiled a dataset of HEV waterborne outbreaks and used it to obtain models of geographical suitability for HEV across the planet. The main three variables that best predict the geographical distribution of HEV outbreaks at global scale are population density, annual potential evapotranspiration and precipitation seasonality. At a regional scale, the temporal occurrence of HEV outbreaks in the Ganges watershed is negatively correlated with the discharge of the river (r = -0.77). Combined, our findings suggest that ultimately, population density and water balance are main parameters influencing the occurrence of HEV-1 and HEV-2 outbreaks. This study expands the current understanding of the combination of factors shaping the biogeography and seasonality of waterborne viral pathogens such as HEV-1 and HEV-2, and contributes to developing novel concepts for the prediction and control of human waterborne viruses in the near future.


Asunto(s)
Brotes de Enfermedades/prevención & control , Hepatitis E/epidemiología , Hepatitis E/transmisión , Densidad de Población , África/epidemiología , Asia/epidemiología , Países en Desarrollo , Agua Potable/virología , Virus de la Hepatitis E/genética , Humanos , Contaminación del Agua , Purificación del Agua
15.
Front Microbiol ; 8: 1928, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29046672

RESUMEN

The emergence of waterborne viruses with resistance to disinfection has been demonstrated in the laboratory and in the environment. Yet, the implications of such resistance for virus control remain obscure. In this study we investigate if viruses with resistance to a given disinfection method exhibit cross-resistance to other disinfectants. Chlorine dioxide (ClO2)- or UV-resistant populations of echovirus 11 were exposed to five inactivating treatments (free chlorine, ClO2, UV radiation, sunlight, and heat), and the extent of cross-resistance was determined. The ClO2-resistant population exhibited cross-resistance to free chlorine, but to none of the other inactivating treatments tested. We furthermore demonstrated that ClO2 and free chlorine act by a similar mechanism, in that they mainly inhibit the binding of echovirus 11 to its host cell. As such, viruses with host binding mechanisms that can withstand ClO2 treatment were also better able to withstand oxidation by free chlorine. Conversely, the UV-resistant population was not significantly cross-resistant to any other disinfection treatment. Overall, our results indicate that viruses with resistance to multiple disinfectants exist, but that they can be controlled by inactivating methods that operate by a distinctly different mechanism. We therefore suggest to utilize two disinfection barriers that act by different mechanisms in order to control disinfection-resistant viruses.

16.
Virus Evol ; 3(2): vex035, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29225923

RESUMEN

Ultraviolet light in the UVC range is a commonly used disinfectant to control viruses in clinical settings and water treatment. However, it is currently unknown whether human viral pathogens may develop resistance to such stressor. Here, we investigate the adaptation of an enteric pathogen, human echovirus 11, to disinfection by UVC, and characterized the underlying phenotypic and genotypic changes. Repeated exposure to UVC lead to a reduction in the UVC inactivation rate of approximately 15 per cent compared to that of the wild-type and the control populations. Time-series next-generation sequencing data revealed that this adaptation to UVC was accompanied by a decrease in the virus mutation rate. The inactivation efficiency of UVC was additionally compromised by a shift from first-order to biphasic inactivation kinetics, a form of 'viral persistence' present in the UVC resistant and control populations. Importantly, populations with biphasic inactivation kinetics also exhibited resistance to ribavirin, an antiviral drug that, as UVC, interferes with the viral replication. Overall, the ability of echovirus 11 to adapt to UVC is limited, but it may have relevant consequences for disinfection in clinical settings and water treatment plants.

17.
J Hazard Mater ; 339: 223-231, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28662403

RESUMEN

The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H2O2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL-1) and H2O2 in the system (1, 5 and 10mgL-1) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized).


Asunto(s)
Escherichia coli/efectos de los fármacos , Compuestos Férricos , Compuestos Ferrosos , Peróxido de Hidrógeno/farmacología , Hierro/farmacología , Levivirus/efectos de los fármacos , Semiconductores , Catálisis , Compuestos Férricos/química , Compuestos Férricos/efectos de la radiación , Compuestos Ferrosos/química , Compuestos Ferrosos/efectos de la radiación , Tamaño de la Partícula , Fotólisis , Luz Solar , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Aguas Residuales/virología
18.
Food Environ Virol ; 6(4): 260-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24952878

RESUMEN

Disinfection by low-pressure monochromatic ultraviolet (UVC) radiation (253.7 nm) became an important technique to sanitize drinking water and also wastewater in tertiary treatments. In order to prevent the transmission of waterborne viral diseases, the analysis of the disinfection kinetics and the quantification of infectious viral pathogens and indicators are highly relevant and need to be addressed. The families Adenoviridae and Polyomaviridae comprise human and animal pathogenic viruses that have been also proposed as indicators of fecal contamination in water and as Microbial Source Tracking tools. While it has been previously suggested that dsDNA viruses may be highly resistant to UVC radiation compared to other viruses or bacteria, no information is available on the stability of polyomavirus toward UV irradiation. Here, the inactivation of dsDNA (HAdV2 and JCPyV) and ssRNA (MS2 bacteriophage) viruses was analyzed at increasing UVC fluences. A minor decay of 2-logs was achieved for both infectious JC polyomaviruses (JCPyV) and human adenoviruses 2 (HAdV2) exposed to a UVC fluence of 1,400 J/m(2), while a decay of 4-log was observed for MS2 bacteriophages (ssRNA). The present study reveals the high UVC resistance of dsDNA viruses, and the UV fluences needed to efficiently inactivate JCPyV and HAdV2 are predicted. Furthermore, we show that in conjunction with appropriate mathematical models, qPCR data may be used to accurately estimate virus infectivity.


Asunto(s)
Adenoviridae/efectos de la radiación , ADN Viral/efectos de la radiación , Desinfección/métodos , Polyomaviridae/efectos de la radiación , ARN Viral/efectos de la radiación , Adenoviridae/metabolismo , Adenoviridae/patogenicidad , Adenoviridae/ultraestructura , Adenovirus Humanos/metabolismo , Adenovirus Humanos/patogenicidad , Adenovirus Humanos/efectos de la radiación , Adenovirus Humanos/ultraestructura , Línea Celular , ADN Viral/metabolismo , Humanos , Virus JC/metabolismo , Virus JC/patogenicidad , Virus JC/efectos de la radiación , Virus JC/ultraestructura , Cinética , Levivirus/metabolismo , Levivirus/patogenicidad , Levivirus/efectos de la radiación , Levivirus/ultraestructura , Viabilidad Microbiana/efectos de la radiación , Microscopía Electrónica de Transmisión , Polyomaviridae/metabolismo , Polyomaviridae/patogenicidad , Polyomaviridae/ultraestructura , Estabilidad del ARN/efectos de la radiación , ARN Viral/metabolismo , Tolerancia a Radiación , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rayos Ultravioleta , Virión/metabolismo , Virión/patogenicidad , Virión/efectos de la radiación , Virión/ultraestructura , Inactivación de Virus/efectos de la radiación
19.
Food Environ Virol ; 6(1): 31-41, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24293153

RESUMEN

Shellfish complying with European Regulations based on quantification of fecal bacterial indicators (FIB) are introduced into markets; however, information on viruses, more stable than FIB, is not available in the literature. To assess the presence of noroviruses (NoVs) GI and GII and human adenoviruses (HAdV) in domestic and imported mussels and clams (n = 151) their presence was analyzed during winter seasons (2004-2008) in north-west Spanish markets through a routine surveillance system. All samples tested negative for NoV GI and 13 % were positive for NoV GII. The role of HAdV as viral indicator was evaluated in 20 negative and 10 positive NoV GII samples showing an estimated sensitivity and specificity of HAdV to predict the presence of NoV GII of 100 and 74 % (cut-off 0.5). The levels of HAdV and NoVs and the efficiency of decontamination in shellfish depuration plants (SDP) were evaluated analyzing pre- and post-depurated mussels collected in May-June 2010 from three different SDP. There were no statistically significant differences in the prevalence and quantification of HAdV between pre- and post-depurated shellfish and between seawater entering and leaving the depuration systems. Moreover, infectious HAdV were detected in depurated mussels. These results confirm previous studies showing that current controls and depuration treatments limiting the number of FIB do not guarantee the absence of viruses in shellfish.


Asunto(s)
Adenoviridae/aislamiento & purificación , Bivalvos/virología , Contaminación de Alimentos/análisis , Norovirus/aislamiento & purificación , Mariscos/virología , Adenoviridae/clasificación , Adenoviridae/genética , Animales , Infecciones por Caliciviridae/virología , Contaminación de Alimentos/economía , Humanos , Norovirus/clasificación , Norovirus/genética , Estaciones del Año , Mariscos/economía , España
20.
Biomed Res Int ; 2013: 192089, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762826

RESUMEN

Many different viruses are excreted by humans and animals and are frequently detected in fecal contaminated waters causing public health concerns. Classical bacterial indicator such as E. coli and enterococci could fail to predict the risk for waterborne pathogens such as viruses. Moreover, the presence and levels of bacterial indicators do not always correlate with the presence and concentration of viruses, especially when these indicators are present in low concentrations. Our research group has proposed new viral indicators and methodologies for determining the presence of fecal pollution in environmental samples as well as for tracing the origin of this fecal contamination (microbial source tracking). In this paper, we examine to what extent have these indicators been applied by the scientific community. Recently, quantitative assays for quantification of poultry and ovine viruses have also been described. Overall, quantification by qPCR of human adenoviruses and human polyomavirus JC, porcine adenoviruses, bovine polyomaviruses, chicken/turkey parvoviruses, and ovine polyomaviruses is suggested as a toolbox for the identification of human, porcine, bovine, poultry, and ovine fecal pollution in environmental samples.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Heces/virología , Virus/aislamiento & purificación , Contaminación del Agua/análisis , Animales , Humanos , Reacción en Cadena de la Polimerasa , Microbiología del Agua , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA