Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Nature ; 579(7800): 586-591, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214246

RESUMEN

Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.


Asunto(s)
Acetatos/metabolismo , Azúcares de la Dieta/metabolismo , Fructosa/metabolismo , Microbioma Gastrointestinal/fisiología , Lipogénesis , Hígado/metabolismo , ATP Citrato (pro-S)-Liasa/deficiencia , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetato CoA Ligasa/deficiencia , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Animales , Ácido Cítrico/metabolismo , Azúcares de la Dieta/administración & dosificación , Azúcares de la Dieta/farmacología , Ácidos Grasos/metabolismo , Fructosa/administración & dosificación , Fructosa/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Marcaje Isotópico , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Hígado/citología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Ratones , Especificidad por Sustrato
2.
Genes Dev ; 32(7-8): 497-511, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29674394

RESUMEN

The metabolite acetyl-coenzyme A (acetyl-CoA) is the required acetyl donor for lysine acetylation and thereby links metabolism, signaling, and epigenetics. Nutrient availability alters acetyl-CoA levels in cancer cells, correlating with changes in global histone acetylation and gene expression. However, the specific molecular mechanisms through which acetyl-CoA production impacts gene expression and its functional roles in promoting malignant phenotypes are poorly understood. Here, using histone H3 Lys27 acetylation (H3K27ac) ChIP-seq (chromatin immunoprecipitation [ChIP] coupled with next-generation sequencing) with normalization to an exogenous reference genome (ChIP-Rx), we found that changes in acetyl-CoA abundance trigger site-specific regulation of H3K27ac, correlating with gene expression as opposed to uniformly modulating this mark at all genes. Genes involved in integrin signaling and cell adhesion were identified as acetyl-CoA-responsive in glioblastoma cells, and we demonstrate that ATP citrate lyase (ACLY)-dependent acetyl-CoA production promotes cell migration and adhesion to the extracellular matrix. Mechanistically, the transcription factor NFAT1 (nuclear factor of activated T cells 1) was found to mediate acetyl-CoA-dependent gene regulation and cell adhesion. This occurs through modulation of Ca2+ signals, triggering NFAT1 nuclear translocation when acetyl-CoA is abundant. The findings of this study thus establish that acetyl-CoA impacts H3K27ac at specific loci, correlating with gene expression, and that expression of cell adhesion genes are driven by acetyl-CoA in part through activation of Ca2+-NFAT signaling.


Asunto(s)
Acetilcoenzima A/metabolismo , Señalización del Calcio , Adhesión Celular , Movimiento Celular , Glioblastoma/metabolismo , Factores de Transcripción NFATC/metabolismo , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilación , Animales , Adhesión Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Glucosa/metabolismo , Histonas/metabolismo , Ratones Desnudos
3.
Mol Cell ; 67(2): 252-265.e6, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28689661

RESUMEN

While maintaining the integrity of the genome and sustaining bioenergetics are both fundamental functions of the cell, potential crosstalk between metabolic and DNA repair pathways is poorly understood. Since histone acetylation plays important roles in DNA repair and is sensitive to the availability of acetyl coenzyme A (acetyl-CoA), we investigated a role for metabolic regulation of histone acetylation during the DNA damage response. In this study, we report that nuclear ATP-citrate lyase (ACLY) is phosphorylated at S455 downstream of ataxia telangiectasia mutated (ATM) and AKT following DNA damage. ACLY facilitates histone acetylation at double-strand break (DSB) sites, impairing 53BP1 localization and enabling BRCA1 recruitment and DNA repair by homologous recombination. ACLY phosphorylation and nuclear localization are necessary for its role in promoting BRCA1 recruitment. Upon PARP inhibition, ACLY silencing promotes genomic instability and cell death. Thus, the spatial and temporal control of acetyl-CoA production by ACLY participates in the mechanism of DNA repair pathway choice.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Acetilcoenzima A/metabolismo , Proteína BRCA1/metabolismo , Núcleo Celular/enzimología , Roturas del ADN de Doble Cadena , Reparación del ADN por Recombinación , Células A549 , ATP Citrato (pro-S)-Liasa/genética , Acetilación , Animales , Proteína BRCA1/genética , Núcleo Celular/efectos de los fármacos , Femenino , Puntos de Control de la Fase G2 del Ciclo Celular , Inestabilidad Genómica , Glucosa/metabolismo , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Melanoma Experimental/enzimología , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Fosforilación , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Unión Proteica , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Reparación del ADN por Recombinación/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular , Serina , Factores de Tiempo , Transfección , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo
4.
J Biol Chem ; 292(8): 3312-3322, 2017 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-28077572

RESUMEN

Cellular metabolism dynamically regulates the epigenome via availability of the metabolite substrates of chromatin-modifying enzymes. The impact of diet on the metabolism-epigenome axis is poorly understood but could alter gene expression and influence metabolic health. ATP citrate-lyase produces acetyl-CoA in the nucleus and cytosol and regulates histone acetylation levels in many cell types. Consumption of a high-fat diet (HFD) results in suppression of ATP citrate-lyase levels in tissues such as adipose and liver, but the impact of diet on acetyl-CoA and histone acetylation in these tissues remains unknown. Here we examined the effects of HFD on levels of acyl-CoAs and histone acetylation in mouse white adipose tissue (WAT), liver, and pancreas. We report that mice consuming a HFD have reduced levels of acetyl-CoA and/or acetyl-CoA:CoA ratio in these tissues. In WAT and the pancreas, HFD also impacted the levels of histone acetylation; in particular, histone H3 lysine 23 acetylation was lower in HFD-fed mice. Genetic deletion of Acly in cultured adipocytes also suppressed acetyl-CoA and histone acetylation levels. In the liver, no significant effects on histone acetylation were observed with a HFD despite lower acetyl-CoA levels. Intriguingly, acetylation of several histone lysines correlated with the acetyl-CoA: (iso)butyryl-CoA ratio in liver. Butyryl-CoA and isobutyryl-CoA interacted with the acetyltransferase P300/CBP-associated factor (PCAF) in liver lysates and inhibited its activity in vitro This study thus provides evidence that diet can impact tissue acyl-CoA and histone acetylation levels and that acetyl-CoA abundance correlates with acetylation of specific histone lysines in WAT but not in the liver.


Asunto(s)
Acilcoenzima A/metabolismo , Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Histonas/metabolismo , Hígado/metabolismo , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilación , Acilcoenzima A/análisis , Animales , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Eliminación de Gen , Histonas/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/metabolismo
5.
FEBS Lett ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886112

RESUMEN

Pancreatic cancer is a lethal disease with limited effective treatments. A deeper understanding of its molecular mechanisms is crucial to reduce incidence and mortality. Epidemiological evidence suggests a link between diet and disease risk, though dietary recommendations for at-risk individuals remain debated. Here, we propose that cell-intrinsic nutrient sensing pathways respond to specific diet-derived cues to facilitate oncogenic transformation of pancreatic epithelial cells. This review explores how diet influences pancreatic cancer predisposition through nutrient sensing and downstream consequences for (pre-)cancer cell biology. We also examine experimental evidence connecting specific food intake to pancreatic cancer progression, highlighting nutrient sensing as a promising target for therapeutic development to mitigate disease risk.

6.
Cells ; 13(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38995012

RESUMEN

Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive sarcomas that can arise both sporadically and in patients with the genetic syndrome Neurofibromatosis type 1 (NF1). Prognosis is dismal, as large dimensions, risk of relapse, and anatomical localization make surgery poorly effective, and no therapy is known. Hence, the identification of MPNST molecular features that could be hit in an efficient and selective way is mandatory to envision treatment options. Here, we find that MPNSTs express high levels of the glycolytic enzyme Hexokinase 2 (HK2), which is known to shield cancer cells from noxious stimuli when it localizes at MAMs (mitochondria-associated membranes), contact sites between mitochondria and endoplasmic reticulum. A HK2-targeting peptide that dislodges HK2 from MAMs rapidly induces a massive death of MPNST cells. After identifying different matrix metalloproteases (MMPs) expressed in the MPNST microenvironment, we have designed HK2-targeting peptide variants that harbor cleavage sites for these MMPs, making such peptides activatable in the proximity of cancer cells. We find that the peptide carrying the MMP2/9 cleavage site is the most effective, both in inhibiting the in vitro tumorigenicity of MPNST cells and in hampering their growth in mice. Our data indicate that detaching HK2 from MAMs could pave the way for a novel anti-MPNST therapeutic strategy, which could be flexibly adapted to the protease expression features of the tumor microenvironment.


Asunto(s)
Hexoquinasa , Péptidos , Hexoquinasa/metabolismo , Hexoquinasa/genética , Humanos , Animales , Línea Celular Tumoral , Péptidos/metabolismo , Péptidos/farmacología , Péptidos/química , Ratones , Neoplasias de la Vaina del Nervio/patología , Neoplasias de la Vaina del Nervio/genética , Neoplasias de la Vaina del Nervio/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Metaloproteinasa 2 de la Matriz/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Microambiente Tumoral
7.
J Exp Clin Cancer Res ; 43(1): 15, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195652

RESUMEN

BACKGROUND: New drugs to tackle the next pathway or mutation fueling cancer are constantly proposed, but 97% of them are doomed to fail in clinical trials, largely because they are identified by cellular or in silico screens that cannot predict their in vivo effect. METHODS: We screened an Adeno-Associated Vector secretome library (> 1000 clones) directly in vivo in a mouse model of cancer and validated the therapeutic effect of the first hit, EMID2, in both orthotopic and genetic models of lung and pancreatic cancer. RESULTS: EMID2 overexpression inhibited both tumor growth and metastatic dissemination, consistent with prolonged survival of patients with high levels of EMID2 expression in the most aggressive human cancers. Mechanistically, EMID2 inhibited TGFß maturation and activation of cancer-associated fibroblasts, resulting in more elastic ECM and reduced levels of YAP in the nuclei of cancer cells. CONCLUSION: This is the first in vivo screening, precisely designed to identify proteins able to interfere with cancer cell invasiveness. EMID2 was selected as the most potent protein, in line with the emerging relevance of the tumor extracellular matrix in controlling cancer cell invasiveness and dissemination, which kills most of cancer patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Núcleo Celular , Modelos Animales de Enfermedad , Detección Precoz del Cáncer , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Colágeno/metabolismo
8.
Sci Adv ; 9(18): eadf0115, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37134161

RESUMEN

The metabolite acetyl-CoA is necessary for both lipid synthesis in the cytosol and histone acetylation in the nucleus. The two canonical precursors to acetyl-CoA in the nuclear-cytoplasmic compartment are citrate and acetate, which are processed to acetyl-CoA by ATP-citrate lyase (ACLY) and acyl-CoA synthetase short-chain 2 (ACSS2), respectively. It is unclear whether other substantial routes to nuclear-cytosolic acetyl-CoA exist. To investigate this, we generated cancer cell lines lacking both ACLY and ACSS2 [double knockout (DKO) cells]. Using stable isotope tracing, we show that both glucose and fatty acids contribute to acetyl-CoA pools and histone acetylation in DKO cells and that acetylcarnitine shuttling can transfer two-carbon units from mitochondria to cytosol. Further, in the absence of ACLY, glucose can feed fatty acid synthesis in a carnitine responsive and carnitine acetyltransferase (CrAT)-dependent manner. The data define acetylcarnitine as an ACLY- and ACSS2-independent precursor to nuclear-cytosolic acetyl-CoA that can support acetylation, fatty acid synthesis, and cell growth.


Asunto(s)
Histonas , Lipogénesis , Lipogénesis/genética , Histonas/metabolismo , Acetilcarnitina/metabolismo , Acetilación , Acetilcoenzima A/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Glucosa/metabolismo
9.
Redox Biol ; 68: 102962, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38029455

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) cells reprogram both mitochondrial and lysosomal functions to support growth. At the same time, this causes significant dishomeostasis of free radicals. While this is compensated by the upregulation of detoxification mechanisms, it also represents a potential vulnerability. Here we demonstrate that PDA cells are sensitive to the inhibition of the mevalonate pathway (MVP), which supports the biosynthesis of critical antioxidant intermediates and protect from ferroptosis. We attacked the susceptibility of PDA cells to ferroptotic death with selenorganic compounds, including dibenzyl diselenide (DBDS) that exhibits potent pro-oxidant properties and inhibits tumor growth in vitro and in vivo. DBDS treatment induces the mobilization of iron from mitochondria enabling uncontrolled lipid peroxidation. Finally, we showed that DBDS and statins act synergistically to promote ferroptosis and provide evidence that combined treatment is a viable strategy to combat PDA.


Asunto(s)
Ferroptosis , Neoplasias Pancreáticas , Selenio , Humanos , Páncreas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Peroxidación de Lípido , Neoplasias Pancreáticas
10.
Open Biol ; 12(5): 220038, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580618

RESUMEN

Both epigenetic and metabolic reprogramming guide lymphocyte differentiation and can be linked, in that metabolic inputs can be integrated into the epigenome to inform cell fate decisions. This framework has been thoroughly investigated in several pathophysiological contexts, including haematopoietic cell differentiation. In fact, metabolite availability dictates chromatin architecture and lymphocyte specification, a multi-step process where haematopoietic stem cells become terminally differentiated lymphocytes (effector or memory) to mount the adaptive immune response. B and T cell precursors reprogram their cellular metabolism across developmental stages, not only to meet ever-changing energetic demands but to impose chromatin accessibility and regulate the function of master transcription factors. Metabolic control of the epigenome has been extensively investigated in T lymphocytes, but how this impacts type-B life cycle remains poorly appreciated. This assay will review our current understanding of the connection between cell metabolism and epigenetics at crucial steps of B cell maturation and how its dysregulation contributes to malignant transformation.


Asunto(s)
Cromatina , Epigénesis Genética , Diferenciación Celular , Cromatina/genética , Epigenómica , Activación de Linfocitos
11.
J Exp Clin Cancer Res ; 41(1): 315, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289544

RESUMEN

BACKGROUND: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood. METHODS: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-ß) signaling. RESULTS: We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-ß signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-ß type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells. CONCLUSIONS: We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patología , Receptor Tipo I de Factor de Crecimiento Transformador beta , ARN Interferente Pequeño , Neoplasias Pancreáticas/patología , Células Madre Neoplásicas/metabolismo , Factor de Crecimiento Transformador beta , ARN Mensajero , Receptores de Activinas , Movimiento Celular/genética , Línea Celular Tumoral , Laminina/genética , Laminina/metabolismo , Neoplasias Pancreáticas
12.
J Clin Invest ; 118(6): 2062-75, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18483621

RESUMEN

Experimental and clinical evidence indicate that bone marrow cells participate in the process of new blood vessel formation. However, the molecular mechanisms underlying their recruitment and their exact role are still elusive. Here, we show that bone marrow cells are recruited to the sites of neoangiogenesis through the neuropilin-1 (NP-1) receptor and that they are essential for the maturation of the activated endothelium and the formation of arteries in mice. By exploiting adeno-associated virus vector-mediated, long-term in vivo gene expression, we show that the 165-aa isoform of VEGF, which both activates the endothelium and recruits NP-1+ myeloid cells, is a powerful arteriogenic agent. In contrast, neither the shortest VEGF121 isoform, which does not bind NP-1 and thus does not recruit bone marrow cells, nor semaphorin 3A, which attracts cells but inhibits endothelial activation, are capable of sustaining arterial formation. Bone marrow myeloid cells are not arteriogenic per se nor are they directly incorporated in the newly formed vasculature, but they contribute to arterial formation through a paracrine effect ensuing in the activation and proliferation of tissue-resident smooth muscle cells.


Asunto(s)
Arterias/patología , Células de la Médula Ósea/citología , Neuropilina-1/fisiología , Animales , Células de la Médula Ósea/metabolismo , Antígeno CD11b/biosíntesis , Proliferación Celular , Dependovirus/metabolismo , Regulación de la Expresión Génica , Terapia Genética/métodos , Ratones , Neovascularización Patológica , Neuropilina-1/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/biosíntesis , Semaforina-3A/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Metabolites ; 11(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652890

RESUMEN

Cholesterol is a non-essential metabolite that exerts both structural and signaling functions. However, cholesterol biosynthesis is elevated, and actively supports, pancreatic carcinogenesis. Our previous work showed that statins block the reprogramming of mutant KRAS-expressing acinar cells, that spontaneously undergo a metaplastic event termed acinar-to-ductal metaplasia (ADM) to initiate carcinogenesis. Here we tested the impact of cholesterol supplementation on isolated primary wild-type acinar cells and observed enhanced ductal transdifferentiation, associated with generation of the second messenger cyclic adenosine monophosphate (cAMP) and the induction of downstream protein kinase A (PKA). Inhibition of PKA suppresses cholesterol-induced ADM ex vivo. Live imaging using fluorescent biosensors dissected the temporal and spatial dynamics of PKA activation upon cholesterol addition and showed uneven activation both in the cytosol and on the outer mitochondrial membrane of primary pancreatic acinar cells. The ability of cholesterol to activate cAMP signaling is lost in tumor cells. Qualitative examination of multiple normal and transformed cell lines supports the notion that the cAMP/PKA axis plays different roles during multi-step pancreatic carcinogenesis. Collectively, our findings describe the impact of cholesterol availability on the cyclic AMP/PKA axis and plasticity of pancreatic acinar cells.

14.
Cancers (Basel) ; 12(9)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932616

RESUMEN

The carcinogenesis of pancreatic ductal adenocarcinoma (PDA) progresses according to multi-step evolution, whereby the disease acquires increasingly aggressive pathological features. On the other hand, disease inception is poorly investigated. Decoding the cascade of events that leads to oncogenic transformation is crucial to design strategies for early diagnosis as well as to tackle tumor onset. Lineage-tracing experiments demonstrated that pancreatic cancerous lesions originate from acinar cells, a highly specialized cell type in the pancreatic epithelium. Primary acinar cells can survive in vitro as organoid-like 3D spheroids, which can transdifferentiate into cells with a clear ductal morphology in response to different cell- and non-cell-autonomous stimuli. This event, termed acinar-to-ductal metaplasia, recapitulates the histological and molecular features of disease initiation. Here, we will discuss the isolation and culture of primary pancreatic acinar cells, providing a historical and technical perspective. The impact of pancreatic cancer research will also be debated. In particular, we will dissect the roles of transcriptional, epigenetic, and metabolic reprogramming for tumor initiation and we will show how that can be modeled using ex vivo acinar cell cultures. Finally, mechanisms of PDA initiation described using organotypical cultures will be reviewed.

15.
Methods Mol Biol ; 1928: 125-147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30725455

RESUMEN

Acetylation is a highly abundant and dynamic post-translational modification (PTM) on histone proteins which, when present on chromatin-bound histones, facilitates the accessibility of DNA for gene transcription. The central metabolite, acetyl-CoA, is a substrate for acetyltransferases, which catalyze protein acetylation. Acetyl-CoA is an essential intermediate in diverse metabolic pathways, and cellular acetyl-CoA levels fluctuate according to extracellular nutrient availability and the metabolic state of the cell. The Michaelis constant (Km) of most histone acetyltransferases (HATs), which specifically target histone proteins, falls within the range of cellular acetyl-CoA concentrations. As a consequence, global levels of histone acetylation are often restricted by availability of acetyl-CoA. Such metabolic regulation of histone acetylation is important for cell proliferation, differentiation, and a variety of cellular functions. In cancer, numerous oncogenic signaling events hijack cellular metabolism, ultimately inducing an extensive rearrangement of the epigenetic state of the cell. Understanding metabolic control of the epigenome through histone acetylation is essential to illuminate the molecular mechanisms by which cells sense, adapt, and occasionally disengage nutrient fluctuations and environmental cues from gene expression. In particular, targeting metabolic regulators or even dietary interventions to impact acetyl-CoA availability and histone acetylation is a promising target in cancer therapy. Liquid chromatography coupled to mass spectrometry (LC-MS) is the most accurate methodology to quantify protein PTMs and metabolites. In this chapter, we present state-of-the-art protocols to analyze histone acetylation and acetyl-CoA. Histones are extracted and digested into short peptides (4-20 aa) prior to LC-MS. Acetyl-CoA is extracted from cells and analyzed using an analogous mass spectrometry-based procedure. Model systems can be fed with isotopically labeled substrates to investigate the metabolic preference for acetyl-CoA production and the metabolic dependence and turnover of histone acetylation. We also present an example of data integration to correlate changes in acetyl-CoA production with histone acetylation.


Asunto(s)
Acetilcoenzima A/metabolismo , Histonas/metabolismo , Espectrometría de Masas , Metabolómica , Acetatos/metabolismo , Acetilación , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Análisis de Datos , Glucosa/metabolismo , Humanos , Marcaje Isotópico , Espectrometría de Masas/métodos , Metabolómica/métodos , Péptidos/metabolismo , Proteómica/métodos , Flujo de Trabajo
16.
Cancer Discov ; 9(3): 416-435, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30626590

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis, and new strategies for prevention and treatment are urgently needed. We previously reported that histone H4 acetylation is elevated in pancreatic acinar cells harboring Kras mutations prior to the appearance of premalignant lesions. Because acetyl-CoA abundance regulates global histone acetylation, we hypothesized that altered acetyl-CoA metabolism might contribute to metabolic or epigenetic alterations that promote tumorigenesis. We found that acetyl-CoA abundance is elevated in KRAS-mutant acinar cells and that its use in the mevalonate pathway supports acinar-to-ductal metaplasia (ADM). Pancreas-specific loss of the acetyl-CoA-producing enzyme ATP-citrate lyase (ACLY) accordingly suppresses ADM and tumor formation. In PDA cells, growth factors promote AKT-ACLY signaling and histone acetylation, and both cell proliferation and tumor growth can be suppressed by concurrent BET inhibition and statin treatment. Thus, KRAS-driven metabolic alterations promote acinar cell plasticity and tumor development, and targeting acetyl-CoA-dependent processes exerts anticancer effects. SIGNIFICANCE: Pancreatic cancer is among the deadliest of human malignancies. We identify a key role for the metabolic enzyme ACLY, which produces acetyl-CoA, in pancreatic carcinogenesis. The data suggest that acetyl-CoA use for histone acetylation and in the mevalonate pathway facilitates cell plasticity and proliferation, suggesting potential to target these pathways.See related commentary by Halbrook et al., p. 326.This article is highlighted in the In This Issue feature, p. 305.


Asunto(s)
Acetilcoenzima A/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Acetilación , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proliferación Celular , Femenino , Genes ras , Xenoinjertos , Histonas/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Procesamiento Proteico-Postraduccional , Transducción de Señal
17.
Nat Genet ; 49(3): 367-376, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28092686

RESUMEN

During the progression of pancreatic ductal adenocarcinoma (PDAC), heterogeneous subclonal populations emerge that drive primary tumor growth, regional spread, distant metastasis, and patient death. However, the genetics of metastases largely reflects that of the primary tumor in untreated patients, and PDAC driver mutations are shared by all subclones. This raises the possibility that an epigenetic process might operate during metastasis. Here we report large-scale reprogramming of chromatin modifications during the natural evolution of distant metastasis. Changes were targeted to thousands of large chromatin domains across the genome that collectively specified malignant traits, including euchromatin and large organized chromatin histone H3 lysine 9 (H3K9)-modified (LOCK) heterochromatin. Remarkably, distant metastases co-evolved a dependence on the oxidative branch of the pentose phosphate pathway (oxPPP), and oxPPP inhibition selectively reversed reprogrammed chromatin, malignant gene expression programs, and tumorigenesis. These findings suggest a model whereby linked metabolic-epigenetic programs are selected for enhanced tumorigenic fitness during the evolution of distant metastasis.


Asunto(s)
Epigénesis Genética/genética , Glucosa/metabolismo , Metástasis de la Neoplasia/genética , Neoplasias Pancreáticas/genética , Carcinogénesis/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Cromatina/genética , Epigenómica/métodos , Expresión Génica/genética , Heterocromatina/genética , Histonas/genética , Humanos , Neoplasias Pancreáticas/metabolismo
18.
Cell Rep ; 17(4): 1037-1052, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27760311

RESUMEN

Mechanisms of metabolic flexibility enable cells to survive under stressful conditions and can thwart therapeutic responses. Acetyl-coenzyme A (CoA) plays central roles in energy production, lipid metabolism, and epigenomic modifications. Here, we show that, upon genetic deletion of Acly, the gene coding for ATP-citrate lyase (ACLY), cells remain viable and proliferate, although at an impaired rate. In the absence of ACLY, cells upregulate ACSS2 and utilize exogenous acetate to provide acetyl-CoA for de novo lipogenesis (DNL) and histone acetylation. A physiological level of acetate is sufficient for cell viability and abundant acetyl-CoA production, although histone acetylation levels remain low in ACLY-deficient cells unless supplemented with high levels of acetate. ACLY-deficient adipocytes accumulate lipid in vivo, exhibit increased acetyl-CoA and malonyl-CoA production from acetate, and display some differences in fatty acid content and synthesis. Together, these data indicate that engagement of acetate metabolism is a crucial, although partial, mechanism of compensation for ACLY deficiency.


Asunto(s)
ATP Citrato (pro-S)-Liasa/metabolismo , Acetatos/metabolismo , Glucosa/metabolismo , ATP Citrato (pro-S)-Liasa/deficiencia , Acetato CoA Ligasa/metabolismo , Acetatos/farmacología , Acetilcoenzima A/metabolismo , Acetilación , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Eliminación de Gen , Histonas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/biosíntesis , Masculino , Ratones , Regulación hacia Arriba/efectos de los fármacos
19.
Curr Opin Biotechnol ; 34: 23-9, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25461508

RESUMEN

Both cellular nutrient metabolism and chromatin organization are remodeled in cancer cells, and these alterations play key roles in tumor development and growth. Many chromatin modifying-enzymes utilize metabolic intermediates as cofactors or substrates, and recent studies have demonstrated that the epigenome is sensitive to cellular metabolism. The contribution of metabolic alterations to epigenetic deregulation in cancer cells is just beginning to emerge, as are the roles of the metabolism-epigenetics link in tumorigenesis. Here we review the roles of acetyl-CoA and S-adenosylmethionine (SAM), donor substrates for acetylation and methylation reactions, respectively, in regulating chromatin modifications in response to nutrient metabolism. We further discuss how oncogenic signaling, cell metabolism, and histone modifications are interconnected and how their relationship might impact tumor growth.


Asunto(s)
Epigénesis Genética , Neoplasias/genética , Neoplasias/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Animales , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos
20.
Mol Cell Oncol ; 2(2): e965620, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27308412

RESUMEN

Histone acetylation is sensitive to the availability of acetyl-CoA. However, the extent to which metabolic alterations in cancer cells impact tumor histone acetylation has been unclear. Here, we discuss our recent findings that oncogenic AKT1 activation regulates histone acetylation levels in tumors through regulation of acetyl-CoA metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA