Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Biol Chem ; 296: 100137, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268383

RESUMEN

Activation of energy-dissipating brown/beige adipocytes represents an attractive therapeutic strategy against metabolic disorders. While lactate is known to induce beiging through the regulation of Ucp1 gene expression, the role of lactate transporters on beige adipocytes' ongoing metabolic activity remains poorly understood. To explore the function of the lactate-transporting monocarboxylate transporters (MCTs), we used a combination of primary cell culture studies, 13C isotopic tracing, laser microdissection experiments, and in situ immunofluorescence of murine adipose fat pads. Dissecting white adipose tissue heterogeneity revealed that the MCT1 is expressed in inducible beige adipocytes as the emergence of uncoupling protein 1 after cold exposure was restricted to a subpopulation of MCT1-expressing adipocytes suggesting MCT1 as a marker of inducible beige adipocytes. We also observed that MCT1 mediates bidirectional and simultaneous inward and outward lactate fluxes, which were required for efficient utilization of glucose by beige adipocytes activated by the canonical ß3-adrenergic signaling pathway. Finally, we demonstrated that significant lactate import through MCT1 occurs even when glucose is not limiting, which feeds the oxidative metabolism of beige adipocytes. These data highlight the key role of lactate fluxes in finely tuning the metabolic activity of beige adipocytes according to extracellular metabolic conditions and reinforce the emerging role of lactate metabolism in the control of energy homeostasis.


Asunto(s)
Adipocitos Beige/metabolismo , Regulación de la Expresión Génica , Ácido Láctico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Adipocitos Beige/citología , Animales , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/genética , Transducción de Señal , Simportadores/genética , Termogénesis
2.
Stem Cells ; 38(6): 782-796, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32083764

RESUMEN

Human adipose-derived stem/stromal cells (hASCs) can differentiate into specialized cell types and thereby contribute to tissue regeneration. As such, hASCs have drawn increasing attention in cell therapy and regenerative medicine, not to mention the ease to isolate them from donors. Culture conditions are critical for expanding hASCs while maintaining optimal therapeutic capabilities. Here, we identified a role for transforming growth factor ß1 (TGFß1) in culture medium in influencing the fate of hASCs during in vitro cell expansion. Human ASCs obtained after expansion in standard culture medium (Standard-hASCs) and in endothelial cell growth medium 2 (EGM2-hASCs) were characterized by high-throughput transcriptional studies, gene set enrichment analysis and functional properties. EGM2-hASCs exhibited enhanced multipotency capabilities and an immature phenotype compared with Standard-hASCs. Moreover, the adipogenic potential of EGM2-hASCs was enhanced, including toward beige adipogenesis, compared with Standard-hASCs. In these conditions, TGFß1 acts as a critical factor affecting the immaturity and multipotency of Standard-hASCs, as suggested by small mother of decapentaplegic homolog 3 (SMAD3) nuclear localization and phosphorylation in Standard-hASCs vs EGM2-hASCs. Finally, the typical priming of Standard-hASCs into osteoblast, chondroblast, and vascular smooth muscle cell (VSMC) lineages was counteracted by pharmacological inhibition of the TGFß1 receptor, which allowed retention of SMAD3 into the cytoplasm and a decrease in expression of osteoblast and VSMC lineage markers. Overall, the TGFß1 pathway appears critical in influencing the commitment of hASCs toward osteoblast, chondroblast, and VSMC lineages, thus reducing their adipogenic potential. These effects can be counteracted by using EGM2 culture medium or chemical inhibition of the TGFß1 pathway.


Asunto(s)
Adipocitos Beige/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo/metabolismo , Células del Estroma/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proliferación Celular , Células Cultivadas , Medios de Cultivo , Humanos
4.
Biochem J ; 473(6): 685-92, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26769382

RESUMEN

FGF21 (fibroblast growth factor 21), first described as a main fasting-responsive molecule in the liver, has been shown to act as a true metabolic regulator in additional tissues, including muscle and adipose tissues. In the present study, we found that the expression and secretion of FGF21 was very rapidly increased following lactate exposure in adipocytes. Using different pharmacological and knockout mice models, we demonstrated that lactate regulates Fgf21 expression through a NADH/NAD-independent pathway, but requires active p38-MAPK (mitogen activated protein kinase) signalling. We also demonstrated that this effect is not restricted to lactate as additional metabolites including pyruvate and ketone bodies also activated the FGF21 stress response. FGF21 release by adipose cells in response to an excess of intermediate metabolites may represent a physiological mechanism by which the sensing of environmental metabolic conditions results in the release of FGF21 to improve metabolic adaptations.


Asunto(s)
Adipocitos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Lactatos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Adipocitos/fisiología , Animales , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica/fisiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Proteína Desacopladora 1 , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/genética
5.
Stem Cells ; 32(6): 1459-67, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24302443

RESUMEN

Identification of molecular mechanisms involved in generation of different types of adipocytes is progressing substantially in mice. However, much less is known regarding characterization of brown (BAP) and white adipocyte progenitors (WAPs) in humans, highlighting the need for an in vitro model of human adipocyte development. Here, we report a procedure to selectively derive BAP and WAPs from human-induced pluripotent stem cells. Molecular characterization of APs of both phenotypes revealed that BMP4, Hox8, Hoxc9, and HoxA5 genes were specifically expressed in WAPs, whereas expression of PRDM16, Dio2, and Pax3 marked BAPs. We focused on Pax3 and we showed that expression of this transcription factor was enriched in human perirenal white adipose tissue samples expressing UCP1 and in human classical brown fat. Finally, functional experiments indicated that Pax3 was a critical player of human AP fate as its ectopic expression led to convert WAPs into brown-like APs. Together, these data support a model in which Pax3 is a new marker of human BAPs and a molecular mediator of their fate. The findings of this study could lead to new anti-obesity therapies based on the recruitment of APs and constitute a platform for investigating in vitro the developmental origins of human white and brown adipocytes.


Asunto(s)
Adipocitos Marrones/citología , Adipocitos Blancos/citología , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción Paired Box/metabolismo , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Adipocitos Blancos/efectos de los fármacos , Adipocitos Blancos/metabolismo , Adipogénesis/efectos de los fármacos , Anciano de 80 o más Años , Animales , Diferenciación Celular/efectos de los fármacos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Factor de Transcripción PAX3 , Fenotipo , Tretinoina/farmacología
6.
Artículo en Inglés | MEDLINE | ID: mdl-38452244

RESUMEN

Alzheimer's disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individuals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spectrometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The 2 metabolomics data sets were analyzed by Data Integration Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites identified, a statistical method that integrated the 2 data sets enabled the identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, identifying adults who will have cognitive decline will enable the development of personalized and early interventions.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Vida Independiente , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Disfunción Cognitiva/metabolismo , Encéfalo/metabolismo , Metabolómica , Proteínas Amiloidogénicas , Péptidos beta-Amiloides/metabolismo , Biomarcadores
7.
Biochem J ; 447(1): 159-66, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-22827337

RESUMEN

The extent and duration of MAPK (mitogen-activated protein kinase) signalling govern a diversity of normal and aberrant cellular outcomes. Genetic and pharmacological disruption of the MAPK-activated kinase RSK (ribosomal S6 kinase) leads to elevated MAPK activity indicative of a RSK-dependent negative feedback loop. Using biochemical, pharmacological and quantitative MS approaches we show that RSK phosphorylates the Ras activator SOS1 (Son of Sevenless homologue 1) in cultured cells on two C-terminal residues, Ser(1134) and Ser(1161). Furthermore, we find that RSK-dependent SOS1 phosphorylation creates 14-3-3-binding sites. We show that mutating Ser(1134) and Ser(1161) disrupts 14-3-3 binding and modestly increases and extends MAPK activation. Together these data suggest that one mechanism whereby RSK negatively regulates MAPK activation is via site-specific SOS1 phosphorylation.


Asunto(s)
Proteínas 14-3-3/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteína SOS1/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células COS , Células Cultivadas , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Fosforilación , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína SOS1/química , Proteína SOS1/genética , Serina/química
8.
Med Sci (Paris) ; 29(8-9): 729-35, 2013.
Artículo en Francés | MEDLINE | ID: mdl-24005627

RESUMEN

In mammals, typically two types of adipose tissues are described: the white and the brown adipose tissue (WAT and BAT respectively). Whereas WAT represents the main energy storage in the organism, BAT dissipates energy as heat through the expression of the uncoupling protein UCP1 (uncoupling protein-1) that uncouples the functioning of the respiratory chain from ATP synthase. While both white and brown adipocytes have been considered for a long time as two very close cellular types sharing a common precursor, recent data challenge these conclusions and propose the existence of a new possible type of adipocyte, the BRITE (brown-in-white) adipocyte. In parallel, the recent discovery of significant amounts of BAT in human adults has renewed the interest of the scientific community for this tissue. Given its considerable capacity to dissipate substrates, BAT appears again as a therapeutic target against metabolic diseases such as diabetes and obesity. This review's objective is to discuss recent literature and to highlight elements to be clarified.


Asunto(s)
Adipocitos Marrones/fisiología , Adipocitos Blancos/fisiología , Enfermedades Metabólicas/terapia , Animales , Diabetes Mellitus/terapia , Metabolismo Energético , Humanos , Canales Iónicos/fisiología , Proteínas Mitocondriales/fisiología , Obesidad/terapia , Proteína Desacopladora 1
9.
Adv Sci (Weinh) ; 10(31): e2301499, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37731092

RESUMEN

Obesity and type 2 diabetes are becoming a global sociobiomedical burden. Beige adipocytes are emerging as key inducible actors and putative relevant therapeutic targets for improving metabolic health. However, in vitro models of human beige adipose tissue are currently lacking and hinder research into this cell type and biotherapy development. Unlike traditional bottom-up engineering approaches that aim to generate building blocks, here a scalable system is proposed to generate pre-vascularized and functional human beige adipose tissue organoids using the human stromal vascular fraction of white adipose tissue as a source of adipose and endothelial progenitors. This engineered method uses a defined biomechanical and chemical environment using tumor growth factor ß (TGFß) pathway inhibition and specific gelatin methacryloyl (GelMA) embedding parameters to promote the self-organization of spheroids in GelMA hydrogel, facilitating beige adipogenesis and vascularization. The resulting vascularized organoids display key features of native beige adipose tissue including inducible Uncoupling Protein-1 (UCP1) expression, increased uncoupled mitochondrial respiration, and batokines secretion. The controlled assembly of spheroids allows to translate organoid morphogenesis to a macroscopic scale, generating vascularized centimeter-scale beige adipose micro-tissues. This approach represents a significant advancement in developing in vitro human beige adipose tissue models and facilitates broad applications ranging from basic research to biotherapies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Adipogénesis , Tejido Adiposo Blanco/metabolismo , Organoides/metabolismo
10.
Cancer Res ; 83(17): 2824-2838, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327406

RESUMEN

Identifying mechanisms underlying relapse is a major clinical issue for effective cancer treatment. The emerging understanding of the importance of metastasis in hematologic malignancies suggests that it could also play a role in drug resistance and relapse in acute myeloid leukemia (AML). In a cohort of 1,273 AML patients, we uncovered that the multifunctional scavenger receptor CD36 was positively associated with extramedullary dissemination of leukemic blasts, increased risk of relapse after intensive chemotherapy, and reduced event-free and overall survival. CD36 was dispensable for lipid uptake but fostered blast migration through its binding with thrombospondin-1. CD36-expressing blasts, which were largely enriched after chemotherapy, exhibited a senescent-like phenotype while maintaining their migratory ability. In xenograft mouse models, CD36 inhibition reduced metastasis of blasts and prolonged survival of chemotherapy-treated mice. These results pave the way for the development of CD36 as an independent marker of poor prognosis in AML patients and a promising actionable target to improve the outcome of patients. SIGNIFICANCE: CD36 promotes blast migration and extramedullary disease in acute myeloid leukemia and represents a critical target that can be exploited for clinical prognosis and patient treatment.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Leucemia Mieloide Aguda/patología , Resultado del Tratamiento , Pronóstico , Recurrencia , Crisis Blástica/patología , Enfermedad Crónica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA