Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 44(3): 998-1011, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35723289

RESUMEN

Kidney proximal tubules are a key segment in the reabsorption of solutes and water from the glomerular ultrafiltrate, an essential process for maintaining homeostasis in body fluid compartments. The abundant content of Na+ in the extracellular fluid determines its importance in the regulation of extracellular fluid volume, which is particularly important for different physiological processes including blood pressure control. Basolateral membranes of proximal tubule cells have the classic Na+ + K+-ATPase and the ouabain-insensitive, K+-insensitive, and furosemide-sensitive Na+-ATPase, which participate in the active Na+ reabsorption. Here, we show that nanomolar concentrations of ceramide-1 phosphate (C1P), a bioactive sphingolipid derived in biological membranes from different metabolic pathways, promotes a strong inhibitory effect on the Na+-ATPase activity (C1P50 ≈ 10 nM), leading to a 72% inhibition of the second sodium pump in the basolateral membranes. Ceramide-1-phosphate directly modulates protein kinase A and protein kinase C, which are known to be involved in the modulation of ion transporters including the renal Na+-ATPase. Conversely, we did not observe any effect on the Na+ + K+-ATPase even at a broad C1P concentration range. The significant effect of ceramide-1-phosphate revealed a new potent physiological and pathophysiological modulator for the Na+-ATPase, participating in the regulatory network involving glycero- and sphingolipids present in the basolateral membranes of kidney tubule cells.

2.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36232558

RESUMEN

Kidneys maintain internal milieu homeostasis through a well-regulated manipulation of body fluid composition. This task is performed by the correlation between structure and function in the nephron. Kidney diseases are chronic conditions impacting healthcare programs globally, and despite efforts, therapeutic options for its treatment are limited. The development of chronic degenerative diseases is associated with changes in protein O-GlcNAcylation, a post-translation modification involved in the regulation of diverse cell function. O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. Furthermore, the hexosamine biosynthetic pathway provides the substrate for protein O-GlcNAcylation. Beyond its physiological role, several reports indicate the participation of protein O-GlcNAcylation in cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the impact of protein O-GlcNAcylation on physiological renal function, disease conditions, and possible future directions in the field.


Asunto(s)
Acetilglucosamina , N-Acetilglucosaminiltransferasas , Acetilglucosamina/metabolismo , Hexosaminas/metabolismo , Homeostasis , Riñón/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
3.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430671

RESUMEN

Since the outbreak of COVID-19 disease, a bidirectional interaction between kidney disease and the progression of COVID-19 has been demonstrated. Kidney disease is an independent risk factor for mortality of patients with COVID-19 as well as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leading to the development of acute kidney injury (AKI) and chronic kidney disease (CKD) in patients with COVID-19. However, the detection of kidney damage in patients with COVID-19 may not occur until an advanced stage based on the current clinical blood and urinary examinations. Some studies have pointed out the development of subclinical acute kidney injury (subAKI) syndrome with COVID-19. This syndrome is characterized by significant tubule interstitial injury without changes in the estimated glomerular filtration rate. Despite the complexity of the mechanism(s) underlying the development of subAKI, the involvement of changes in the protein endocytosis machinery in proximal tubule (PT) epithelial cells (PTECs) has been proposed. This paper focuses on the data relating to subAKI and COVID-19 and the role of PTECs and their protein endocytosis machinery in its pathogenesis.


Asunto(s)
Lesión Renal Aguda , COVID-19 , Insuficiencia Renal Crónica , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Lesión Renal Aguda/metabolismo , Insuficiencia Renal Crónica/metabolismo , Túbulos Renales Proximales/metabolismo
4.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35055044

RESUMEN

Renal proximal tubule cells (PTECs) act as urine gatekeepers, constantly and efficiently avoiding urinary protein waste through receptor-mediated endocytosis. Despite its importance, little is known about how this process is modulated in physiologic conditions. Data suggest that the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT) pathway regulates PTEC protein reabsorption. Here, we worked on the hypothesis that the physiologic albumin concentration and PI3K/AKT pathway form a positive feedback loop to expand endocytic capacity. Using LLC-PK1 cells, a model of PTECs, we showed that the PI3K/AKT pathway is required for megalin recycling and surface expression, affecting albumin uptake. Inhibition of this pathway stalls megalin at EEA1+ endosomes. Physiologic albumin concentration (0.01 mg/mL) activated AKT; this depends on megalin-mediated albumin endocytosis and requires previous activation of PI3K/mTORC2. This effect is correlated to the increase in albumin endocytosis, a phenomenon that we refer to as "albumin-induced albumin endocytosis". Mice treated with L-lysine present decreased albumin endocytosis leading to proteinuria and albuminuria associated with inhibition of AKT activity. Renal cortex explants obtained from control mice treated with MK-2206 decreased albumin uptake and promoted megalin internalization. Our data highlight the mechanism behind the capacity of PTECs to adapt albumin reabsorption to physiologic fluctuations in its filtration, avoiding urinary excretion.


Asunto(s)
Células Epiteliales/metabolismo , Retroalimentación Fisiológica , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Albúminas/metabolismo , Animales , Biomarcadores , Endocitosis , Células Epiteliales/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Túbulos Renales Proximales/citología , Masculino , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Transducción de Señal/efectos de los fármacos
5.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34769064

RESUMEN

Novel strategies for the prevention and treatment of sepsis-associated acute kidney injury and its long-term outcomes have been required and remain a challenge in critical care medicine. Therapeutic strategies using lipid mediators, such as aspirin-triggered resolvin D1 (ATRvD1), can contribute to the resolution of acute and chronic inflammation. In this study, we examined the potential effect of ATRvD1 on long-term kidney dysfunction after severe sepsis. Fifteen days after cecal ligation and puncture (CLP), sepsis-surviving BALB/c mice were subjected to a tubulointerstitial injury through intraperitoneal injections of bovine serum albumin (BSA) for 7 days, called the subclinical acute kidney injury (subAKI) animal model. ATRvD1 treatment was performed right before BSA injections. On day 22 after CLP, the urinary protein/creatinine ratio (UPC), histologic parameters, fibrosis, cellular infiltration, apoptosis, inflammatory markers levels, and mRNA expression were determined. ATRvD1 treatment mitigated tubulointerstitial injury by reducing proteinuria excretion, the UPC ratio, the glomerular cell number, and extracellular matrix deposition. Pro-fibrotic markers, such as transforming growth factor ß (TGFß), type 3 collagen, and metalloproteinase (MMP)-3 and -9 were reduced after ATRvD1 administration. Post-septic mice treated with ATRvD1 were protected from the recruitment of IBA1+ cells. The interleukin-1ß (IL-1ß) levels were increased in the subAKI animal model, being attenuated by ATRvD1. Tumor necrosis factor-α (TNF-α), IL-10, and IL-4 mRNA expression were increased in the kidney of BSA-challenged post-septic mice, and it was also reduced after ATRvD1. These results suggest that ATRvD1 protects the kidney against a second insult such as BSA-induced tubulointerstitial injury and fibrosis by suppressing inflammatory and pro-fibrotic mediators in renal dysfunction after sepsis.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Aspirina/farmacología , Ácidos Docosahexaenoicos/farmacología , Glomérulos Renales/efectos de los fármacos , Sepsis/tratamiento farmacológico , Lesión Renal Aguda/inducido químicamente , Albúminas/farmacología , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Pruebas de Función Renal/métodos , Glomérulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Proteinuria/inducido químicamente , Proteinuria/tratamiento farmacológico , Proteinuria/metabolismo , ARN Mensajero/metabolismo , Sepsis/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 319(4): L596-L602, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783619

RESUMEN

A new form of severe acute respiratory syndrome (SARS) caused by SARS-coronavirus 2 (CoV-2), called COVID-19, has become a global threat in 2020. The mortality rate from COVID-19 is high in hypertensive patients, making this association especially dangerous. There appears to be a consensus, despite the lack of experimental data, that angiotensin II (ANG II) is linked to the pathogenesis of COVID-19. This process may occur due to acquired deficiency of angiotensin-converting enzyme 2 (ACE2), resulting in reduced degradation of ANG II. Furthermore, ANG II has a critical role in the genesis and worsening of hypertension. In this context, the idea that there is a surge in the level of ANG II with COVID-19 infection, causing multiple organ injuries in hypertensive patients becomes attractive. However, the role of other components of the renin angiotensin system (RAS) in this scenario requires elucidation. The identification of other RAS components in COVID-19 hypertension may provide both diagnostic and therapeutic benefits. Here, we summarize the pathophysiologic contributions of different components of RAS in hypertension and their possible correlation with poor outcome observed in hypertensive patients with COVID-19.


Asunto(s)
Infecciones por Coronavirus/fisiopatología , Hipertensión/fisiopatología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/fisiopatología , Sistema Renina-Angiotensina/fisiología , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/mortalidad , Humanos , Hipertensión/mortalidad , Pandemias , Neumonía Viral/mortalidad , Factores de Riesgo , SARS-CoV-2
7.
J Biol Chem ; 293(29): 11388-11400, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29871929

RESUMEN

The role of albumin reabsorption in proximal tubule (PT) cells has emerged as an important factor in the genesis of albuminuria observed in the early stages of diabetes. Evidence has shown that a decrease in megalin expression could be the key mechanism in this process. In the present work, we investigated the molecular mechanism underlying the modulation of albumin endocytosis in LLC-PK1 cells, a model of PT cells. High glucose concentrations (HG) inhibited megalin expression and albumin endocytosis after 48 h of incubation. This inhibitory effect involves the entrance of glucose into PT cells through SGLT located at the luminal membrane. Once inside PT cells, glucose is diverted to the hexosamine biosynthetic pathway (HBP) increasing O-GlcNAcylation of several intracellular proteins, including PKB. This process promotes the inhibition of PKB activity measured by its phosphorylation at Thr-308 and Ser-473 and phosphorylation of specific substrates, glycogen synthase kinase 3ß (GSK3ß) and tuberous sclerosis complex 2. The decrease in PKB activity led to a decrease in megalin expression and, consequently, reducing albumin endocytosis in LLC-PK1 cells. HG did not change mammalian target of rapamycin (mTOR) C2 activity, responsible for phosphorylated PKB at Ser-473. In addition, HG activated the mTORC1/S6K pathway, but this effect was not correlated to the decrease in megalin expression or albumin endocytosis. Taken together, our data help to clarify the current understanding underlying the genesis of tubular albuminuria induced by hyperglycemia in the early stage of diabetes pathogenesis.


Asunto(s)
Endocitosis , Hiperglucemia/metabolismo , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Albúmina Sérica Bovina/metabolismo , Acilación , Animales , Bovinos , Línea Celular , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Túbulos Renales Proximales/citología , Sus scrofa
8.
J Biol Chem ; 293(33): 12749-12758, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29954945

RESUMEN

Hypertensive individuals are at greater risk for developing chronic kidney disease (CKD). Reducing proteinuria has been suggested as a possible therapeutic approach to treat CKD. However, the mechanisms underlying the development of proteinuria in hypertensive conditions are incompletely understood. Cardiac and vascular dysfunction is associated with changes in the O-GlcNAcylation pathway in hypertensive models. We hypothesized that O-GlcNAcylation is also involved in renal damage, especially development of proteinuria, associated with hypertension. Using the spontaneously hypertensive rat (SHR) model, we observed higher renal cortex O-GlcNAcylation, glutamine-fructose aminotransferase (GFAT), and O-GlcNAc transferase (OGT) protein expression, which positively correlated with proteinuria. Interestingly, this was observed in hypertensive, but not pre-hypertensive, rats. Pharmacological inhibition of GFAT decreased renal cortex O-GlcNAcylation, proteinuria, and albuminuria in SHR. Using a proximal tubule cell line, we observed that increased O-GlcNAcylation reduced megalin surface expression and albumin endocytosis in vitro, and the effects were correlated in vivo Moreover, megalin is O-GlcNAcylated both in vitro and in vivo In conclusion, our results demonstrate a new mechanism involved in hypertension-associated proteinuria.


Asunto(s)
Acetilglucosamina/química , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Hipertensión/fisiopatología , Túbulos Renales Proximales/patología , Proteinuria/etiología , Reabsorción Renal , Animales , Células Cultivadas , Endocitosis , Glicosilación , Túbulos Renales Proximales/metabolismo , Masculino , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteinuria/patología , Ratas , Ratas Endogámicas SHR , Ratas Wistar , Porcinos
9.
Arch Biochem Biophys ; 674: 108115, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31560867

RESUMEN

Evidence points to a possible role of tubular sodium reabsorption in worsening renal injury. Proximal tubule (PT) albumin overload is a critical process in the development of tubule-interstitial injury (TII), and consequently in progression of renal disease. We studied the possible correlation between changes in albumin concentration in the lumen of PT with modification of Na+-ATPase activity. An albumin overload animal model and LLC-PK1 cells as a model of PT cells were used. Albumin overload was induced by intraperitoneal injection of BSA in 14-week-old male Wistar rats. An increase in sodium clearance, fractional excretion of sodium, proteinuria, ratio between urinary protein and creatinine, and albuminuria were observed. These observations indicate that there could be a correlation between an increase in albumin in the lumen of PTs and renal sodium excretion. We observed that the activity of both Na+-ATPase and (Na++K+)ATPase decreased in the renal cortex of an albumin overload animal model. Using LLC-PK1 cells as a model of PT cells, inhibition of Na+-ATPase activity was observed with higher albumin concentrations, similar to that observed in the animal model. The inhibition of protein kinase B by higher albumin concentration was found to be a critical step in the inhibition of Na+-ATPase activity. Interestingly, activation of the ERK1/2/mTORC1/S6K pathway was required for protein kinase B inhibition. This mechanism leads to a decrease in protein kinase C activity and, consequently to inhibition of Na+-ATPase activity. Taken together, our results indicate that the molecular mechanism underlying the modulation of PT Na+-ATPase activity by albumin overload involves activation of the ERK1/2/mTORC1/S6K pathway, which leads to inhibition of the mTORC2/PKB/PKC pathway. Our findings contribute to better understanding regarding handing of renal Na+ induced by albumin overload in the lumen of PTs and, consequently, in the progression of renal disease.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Túbulos Renales Proximales/citología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Albúmina Sérica Bovina/metabolismo , Animales , Bovinos , Línea Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas/metabolismo , Transducción de Señal/fisiología , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Porcinos
10.
Biochim Biophys Acta ; 1860(11 Pt A): 2438-2444, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27431603

RESUMEN

BACKGROUND: The molecular mechanisms involved in erythrocyte invasion by malaria parasite are well understood, but the contribution of host components is not. We recently reported that Ang-(1-7) impairs the erythrocytic cycle of P. falciparum through Mas receptor-mediated reduction of protein kinase A (PKA) activity. The effects of bradykinin (BK), a peptide of the kallikrein-kinin system (KKS), can be potentiated by Ang-(1-7), or angiotensin-converting enzyme (ACE) inhibitors, such as captopril. We investigated the coordinated action between renin-angiotensin system (RAS) and KKS peptides in the erythrocyte invasion by P. falciparum. METHODS: We used human erythrocytes infected with P. falciparum to assess the influence of RAS and KKS peptides in the invasion of new erythrocytes. RESULTS: The inhibitory effects of Ang-(1-7) were mimicked by captopril. 10(-8)M BK decreased new ring forms and this effect was sensitive to 10(-8)M HOE-140 and 10(-7)M A779, B2 and Mas receptor antagonists, respectively. However, DALBK, a B1 receptor blocker, had no effect. The inhibitory effect of Ang-(1-7) was reversed by HOE-140 and A779 at the same concentrations. Co-immunoprecipitation assay revealed an association between B2 and Mas receptors. BK also inhibited PKA activity, which was sensitive to both HOE-140 and A779. CONCLUSIONS: The results suggest that B2 and Mas receptors are mediators of Ang-(1-7) and BK inhibitory effects, through a cross-signaling pathway, possibly by the formation of a heterodimer. GENERAL SIGNIFICANCE: Our results describe new elements in host signaling that could be involved in parasite invasion during the erythrocyte cycle of P. falciparum.


Asunto(s)
Eritrocitos/parasitología , Plasmodium falciparum/patogenicidad , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Protozoarias/metabolismo , Receptor de Bradiquinina B2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Cultivadas , Humanos , Plasmodium falciparum/metabolismo , Unión Proteica , Proto-Oncogenes Mas
11.
Biochim Biophys Acta ; 1860(7): 1431-8, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27102282

RESUMEN

BACKGROUND: The natriuretic effect of uroguanylin (UGN) involves reduction of proximal tubule (PT) sodium reabsorption. However, the target sodium transporters as well as the molecular mechanisms involved in these processes remain poorly understood. METHODS: To address the effects of UGN on PT (Na(+)+K(+))ATPase and the signal transduction pathways involved in this effect, we used LLC-PK1 cells. The effects of UGN were determined through ouabain-sensitive ATP hydrolysis and immunoblotting assays during different experimental conditions. RESULTS: We observed that UGN triggers cGMP/PKG and cAMP/PKA pathways in a sequential way. The activation of PKA leads to the inhibition of mTORC2 activity, PKB phosphorylation at S473, PKB activity and, consequently, a decrease in the mTORC1/S6K pathway. The final effects are decreased expression of the α1 subunit of (Na(+)+K(+))ATPase and inhibition of enzyme activity. CONCLUSIONS: These results suggest that the molecular mechanism of action of UGN on sodium reabsorption in PT cells is more complex than previously thought. We propose that PKG-dependent activation of PKA leads to the inhibition of the mTORC2/PKB/mTORC1/S6K pathway, an important signaling pathway involved in the maintenance of the PT sodium pump expression and activity. GENERAL SIGNIFICANCE: The current results expand our understanding of the signal transduction pathways involved in the overall effect of UGN on renal sodium excretion.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Natriuréticos/farmacología , Péptidos Natriuréticos/farmacología , Sistemas de Mensajero Secundario/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Activación Enzimática , Hidrólisis , Túbulos Renales Proximales/enzimología , Células LLC-PK1 , Natriuresis/efectos de los fármacos , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Eliminación Renal/efectos de los fármacos , Reabsorción Renal/efectos de los fármacos , Sodio/metabolismo , Porcinos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
12.
J Biol Chem ; 289(24): 16790-801, 2014 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-24790108

RESUMEN

High albumin concentrations in the proximal tubule of the kidney causes tubulointerstitial injury, but how this process occurs is not completely known. To address the signal transduction pathways mis-regulated in renal injury, we studied the modulation of mammalian target of rapamycin (mTOR) complexes by physiologic and pathophysiologic albumin concentrations in proximal tubule cells. Physiologic albumin concentrations activated the PI3K/mTORC2/PKB/mTORC1/S6 kinase (S6K) pathway, but pathophysiologically high albumin concentrations overactivated mTORC1 and inhibited mTORC2 activity. This control process involved the activation of ERK1/2, which promoted the inhibition of TSC2 and activation of S6K. Furthermore, S6K was crucial to promoting the over activation of mTORC1 and inhibition of mTORC2. Megalin expression at the luminal membrane is reduced by high concentrations of albumin. In addition, knockdown of megalin mimicked all the effects of pathophysiologic albumin concentrations, which disrupt normal signal transduction pathways and lead to an overactivation of mTORC1 and inhibition of mTORC2. These data provide new perspectives for understanding the molecular mechanisms behind the effects of albumin on the progression of renal disease.


Asunto(s)
Albuminuria/metabolismo , Túbulos Renales Proximales/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Albúminas/farmacología , Animales , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Túbulos Renales Proximales/citología , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Complejos Multiproteicos/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Porcinos , Serina-Treonina Quinasas TOR/genética
13.
Brain Res ; 1822: 148669, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37951562

RESUMEN

Cerebral malaria (CM) pathogenesis is described as a multistep mechanism. In this context, monocytes have been implicated in CM pathogenesis by increasing the sequestration of infected red blood cells to the brain microvasculature. In disease, endothelial activation is followed by reduced monocyte rolling and increased adhesion. Nowadays, an important challenge is to identify potential pro-inflammatory stimuli that can modulate monocytes behavior. Our group have demonstrated that bradykinin (BK), a pro-inflammatory peptide involved in CM, is generated during the erythrocytic cycle of P. falciparum and is detected in culture supernatant (conditioned medium). Herein we investigated the role of BK in the adhesion of monocytes to endothelial cells of blood brain barrier (BBB). To address this issue human monocytic cell line (THP-1) and human brain microvascular endothelial cells (hBMECs) were used. It was observed that 20% conditioned medium from P. falciparum infected erythrocytes (Pf-iRBC sup) increased the adhesion of THP-1 cells to hBMECs. This effect was mediated by BK through the activation of B2 and B1 receptors and involves the increase in ICAM-1 expression in THP-1 cells. Additionally, it was observed that angiotensin-converting enzyme (ACE) inhibitor, captopril, enhanced the effect of both BK and Pf-iRBC sup on THP-1 adhesion. Together these data show that BK, generated during the erythrocytic cycle of P. falciparum, could play an important role in adhesion of monocytes in endothelial cells lining the BBB.


Asunto(s)
Barrera Hematoencefálica , Bradiquinina , Adhesión Celular , Malaria Cerebral , Malaria Falciparum , Plasmodium falciparum , Humanos , Bradiquinina/metabolismo , Adhesión Celular/fisiología , Medios de Cultivo Condicionados/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Eritrocitos/parasitología , Malaria Cerebral/metabolismo , Malaria Cerebral/parasitología , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Monocitos/fisiología , Plasmodium falciparum/fisiología , Barrera Hematoencefálica/fisiopatología
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167155, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579939

RESUMEN

Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.


Asunto(s)
Endocitosis , Túbulos Renales Proximales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Endocitosis/efectos de los fármacos , Humanos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/virología , Animales , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/metabolismo , Células HEK293 , Porcinos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosforilación , COVID-19/metabolismo , COVID-19/virología , COVID-19/patología , Albúminas/metabolismo , Células LLC-PK1 , Células Epiteliales/metabolismo , Células Epiteliales/virología
15.
Crit Care Med ; 41(4): 1056-68, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23385098

RESUMEN

OBJECTIVE: It is well known that sepsis causes damage in different organs, including kidneys. However, few studies have been conducted on the magnitude of the long-term effects of sepsis on the surviving population, in particular, in relation to kidney disease. In this study, we examined the impact of long-term effects of sepsis on a second kidney insult. DESIGN: Prospective experimental study. SETTING: University research laboratory. INTERVENTIONS: Wild-type mice were subjected to the cecal ligation and puncture sepsis model. Control animals underwent identical laparotomy but without ligation and cecum puncture. On days 0, 7, and 14 after surgery, the ratio between urinary protein and creatinine was measured. Fifteen days after surgery, surviving mice were subjected to a second kidney insult through intraperitoneal injections of bovine serum albumin for 7 days. On day 22 after surgery, urinary protein and creatinine, γ-glutamyl transpeptidase, lactate dehydrogenase, histologic parameters, macrophage infiltration, apoptotic cell, renal and plasmatic cytokines were determined. MEASUREMENTS AND MAIN RESULTS: On days 7 and 14 after surgery, the urinary protein and creatinine observed in the septic animal group were higher than those observed in the control group. On day 22 after surgery, sepsis-surviving animals that were subjected to a second kidney insult showed more severe tubular injury compared with controls. This process seems to involve an immunosuppressive state because the concentrations of some renal cytokines, such as tumor necrosis factor-α, interleukin 6, interferon-γ and chemokine ligand 2, were decreased and leukocyte numbers were increased. CONCLUSIONS: These results suggest that sepsis induces long-term effects in kidney structure aggravating tubule damage in a second kidney insult.


Asunto(s)
Lesión Renal Aguda/patología , Lesión Renal Aguda/orina , Choque Séptico/patología , Choque Séptico/orina , Lesión Renal Aguda/diagnóstico , Animales , Biomarcadores/orina , Ciego , Modelos Animales de Enfermedad , Ratones , Estudios Prospectivos , Punciones , Distribución Aleatoria , Valores de Referencia
16.
Eur J Pharmacol ; 942: 175521, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36681317

RESUMEN

Diabetic kidney disease (DKD) is characterized by progressive impairment of kidney function. It has been postulated that tubule-interstitial injury, associated with tubular albuminuria, precedes glomerular damage in the early stage of DKD. Here, we wanted to determine if the development of tubule-interstitial injury at the early stage of DKD implies modulation of megalin-mediated protein reabsorption in proximal tubule epithelial cells (PTECs) by SGLT2-dependent high glucose influx. Rats with streptozotocin (STZ)-induced diabetes were treated or not with dapagliflozin (DAPA) for 8 weeks. Four experimental groups were generated: (1) CONT, control; (2) DAPA, rats treated with DAPA; (3) STZ, diabetic rats; (4) STZ + DAPA, diabetic rats treated with DAPA. No changes in glomerular structure and function were observed. The STZ group presented proteinuria and albuminuria associated with an increase in the fractional excretion of proteins. A positive correlation between glycemia and proteinuria was found. These phenomena were linked to a decrease in luminal and total megalin expression and, consequently, in albumin reabsorption in PTECs. We also observed tubule-interstitial injury characterized by an increase in urinary tubular injury biomarkers and changes in tubular histomorphometry parameters. In addition, inverse correlations were found between cortical albumin uptake and tubule-interstitial injury or glycemia. All these modifications were attenuated in the STZ + DAPA group. These results suggest that SGLT2-dependent high glucose influx into PTECs promotes a harmful effect on the PTECs, leading to the development of tubular albuminuria and tubule-interstitial injury preceding glomerular damage. These results expand current knowledge on the renoprotective effects of gliflozins.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Ratas , Animales , Nefropatías Diabéticas/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Albuminuria , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/inducido químicamente , Transportador 2 de Sodio-Glucosa/metabolismo , Proteínas/metabolismo , Albúminas/metabolismo , Glucosa/efectos adversos
17.
Front Pharmacol ; 14: 1194816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37484026

RESUMEN

Introduction: Rapamycin is an immunosuppressor that acts by inhibiting the serine/threonine kinase mechanistic target of rapamycin complex 1. Therapeutic use of rapamycin is limited by its adverse effects. Proteinuria is an important marker of kidney damage and a risk factor for kidney diseases progression and has been reported in patients and animal models treated with rapamycin. However, the mechanism underlying proteinuria induced by rapamycin is still an open matter. In this work, we investigated the effects of rapamycin on parameters of renal function and structure and on protein handling by proximal tubule epithelial cells (PTECs). Methods: Healthy BALB/c mice were treated with 1.5 mg/kg rapamycin by oral gavage for 1, 3, or 7 days. At the end of each treatment, the animals were kept in metabolic cages and renal function and structural parameters were analyzed. LLC-PK1 cell line was used as a model of PTECs to test specific effect of rapamycin. Results: Rapamycin treatment did not change parameters of glomerular structure and function. Conversely, there was a transient increase in 24-h proteinuria, urinary protein to creatinine ratio (UPCr), and albuminuria in the groups treated with rapamycin. In accordance with these findings, rapamycin treatment decreased albumin-fluorescein isothiocyanate uptake in the renal cortex. This effect was associated with reduced brush border expression and impaired subcellular distribution of megalin in PTECs. The effect of rapamycin seems to be specific for albumin endocytosis machinery because it did not modify renal sodium handling or (Na++K+)ATPase activity in BALB/c mice and in the LLC-PK1 cell line. A positive Pearson correlation was found between megalin expression and albumin uptake while an inverse correlation was shown between albumin uptake and UPCr or 24-h proteinuria. Despite its effect on albumin handling in PTECs, rapamycin treatment did not induce tubular injury measured by interstitial space and collagen deposition. Conclusion: These findings suggest that proteinuria induced by rapamycin could have a tubular rather than a glomerular origin. This effect involves a specific change in protein endocytosis machinery. Our results open new perspectives on understanding the undesired effect of proteinuria generated by rapamycin.

18.
Biochim Biophys Acta Gen Subj ; 1867(11): 130466, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37742874

RESUMEN

BACKGROUND: Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). It has been proposed that modifications in the function of proximal tubule epithelial cells (PTECs) precede glomerular damage during the onset of DKD. This study aimed to identify modifications in renal sodium handling in the early stage of DM and its molecular mechanism. METHODS: Streptozotocin (STZ)-induced diabetic BALB/c mice (STZ group) and LLC-PK1 cells, a model of PTECs, were used. All parameters were assessed in the 4th week after an initial injection of STZ. RESULTS: Early stage of DKD was characterized by hyperfiltration and PTEC dysfunction. STZ group exhibited increased urinary sodium excretion due to impairment of tubular sodium reabsorption. This was correlated to a decrease in cortical (Na++K+)ATPase (NKA) α1 subunit expression and enzyme activity and an increase in O-GlcNAcylation. RNAseq analysis of patients with DKD revealed an increase in expression of the glutamine-fructose aminotransferase (GFAT) gene, a rate-limiting step of hexosamine biosynthetic pathway, and a decrease in NKA expression. Incubation of LLC-PK1 cells with 10 µM thiamet G, an inhibitor of O-GlcNAcase, reduced the expression and activity of NKA and increased O-GlcNAcylation. Furthermore, 6-diazo-5-oxo-L-norleucine (DON), a GFAT inhibitor, or dapagliflozin, an SGLT2 inhibitor, avoided the inhibitory effect of HG on expression and activity of NKA associated with the decrease in O-GlcNAcylation. CONCLUSION: Our results show that the impairment of tubular sodium reabsorption, in the early stage of DM, is due to SGLT2-mediated HG influx in PTECs, increase in O-GlcNAcylation and reduction in NKA expression and activity.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Porcinos , Animales , Humanos , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Nefropatías Diabéticas/metabolismo , Sodio/metabolismo , Adenosina Trifosfatasas/metabolismo , Diabetes Mellitus/metabolismo
19.
Biochim Biophys Acta Gen Subj ; 1867(4): 130314, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36693453

RESUMEN

Subclinical acute kidney injury (subAKI) is characterized by tubule-interstitial injury without significant changes in glomerular function. SubAKI is associated with the pathogenesis and progression of acute and chronic kidney diseases. Currently, therapeutic strategies to treat subAKI are limited. The use of gold nanoparticles (AuNPs) has shown promising benefits in different models of diseases. However, their possible effects on subAKI are still unknown. Here, we investigated the effects of AuNPs on a mouse model of subAKI. Animals with subAKI showed increased functional and histopathologic markers of tubular injury. There were no changes in glomerular function and structure. The animals with subAKI also presented an inflammatory profile demonstrated by activation of Th1 and Th17 cells in the renal cortex. This phenotype was associated with decreased megalin-mediated albumin endocytosis and expression of proximal tubular megalin. AuNP treatment prevented tubule-interstitial injury induced by subAKI. This effect was associated with a shift to an anti-inflammatory Th2 response. Furthermore, AuNP treatment preserved megalin-mediated albumin endocytosis in vivo and in vitro. AuNPs were not nephrotoxic in healthy mice. These results suggest that AuNPs have a protective effect in the tubule-interstitial injury observed in subAKI, highlighting a promising strategy as a future antiproteinuric treatment.


Asunto(s)
Lesión Renal Aguda , Nanopartículas del Metal , Ratones , Animales , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Oro/farmacología , Túbulos Renales Proximales , Modelos Animales de Enfermedad , Proteinuria/metabolismo , Proteinuria/patología , Albúminas/metabolismo , Lesión Renal Aguda/metabolismo
20.
Cancers (Basel) ; 15(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37835434

RESUMEN

Glioblastoma (GB) is the most aggressive primary malignant brain tumor and is associated with short survival. O-GlcNAcylation is an intracellular glycosylation that regulates protein function, enzymatic activity, protein stability, and subcellular localization. Aberrant O-GlcNAcylation is related to the tumorigenesis of different tumors, and mounting evidence supports O-GlcNAc transferase (OGT) as a potential therapeutic target. Here, we used two human GB cell lines alongside primary human astrocytes as a non-tumoral control to investigate the role of O-GlcNAcylation in cell proliferation, cell cycle, autophagy, and cell death. We observed that hyper O-GlcNAcylation promoted increased cellular proliferation, independent of alterations in the cell cycle, through the activation of autophagy. On the other hand, hypo O-GlcNAcylation inhibited autophagy, promoted cell death by apoptosis, and reduced cell proliferation. In addition, the decrease in O-GlcNAcylation sensitized GB cells to the chemotherapeutic temozolomide (TMZ) without affecting human astrocytes. Combined, these results indicated a role for O-GlcNAcylation in governing cell proliferation, autophagy, cell death, and TMZ response, thereby indicating possible therapeutic implications for treating GB. These findings pave the way for further research and the development of novel treatment approaches which may contribute to improved outcomes and increased survival rates for patients facing this challenging disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA