Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039712

RESUMEN

Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism.

2.
Proc Natl Acad Sci U S A ; 117(40): 24764-24770, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958669

RESUMEN

In the high spin-orbit-coupled Sr2IrO4, the high sensitivity of the ground state to the details of the local lattice structure shows a large potential for the manipulation of the functional properties by inducing local lattice distortions. We use epitaxial strain to modify the Ir-O bond geometry in Sr2IrO4 and perform momentum-dependent resonant inelastic X-ray scattering (RIXS) at the metal and at the ligand sites to unveil the response of the low-energy elementary excitations. We observe that the pseudospin-wave dispersion for tensile-strained Sr2IrO4 films displays large softening along the [h,0] direction, while along the [h,h] direction it shows hardening. This evolution reveals a renormalization of the magnetic interactions caused by a strain-driven cross-over from anisotropic to isotropic interactions between the magnetic moments. Moreover, we detect dispersive electron-hole pair excitations which shift to lower (higher) energies upon compressive (tensile) strain, manifesting a reduction (increase) in the size of the charge gap. This behavior shows an intimate coupling between charge excitations and lattice distortions in Sr2IrO4, originating from the modified hopping elements between the t2g orbitals. Our work highlights the central role played by the lattice degrees of freedom in determining both the pseudospin and charge excitations of Sr2IrO4 and provides valuable information toward the control of the ground state of complex oxides in the presence of high spin-orbit coupling.

3.
J Synchrotron Radiat ; 27(Pt 4): 963-969, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566005

RESUMEN

Resonant inelastic X-ray scattering (RIXS) is increasingly playing a significant role in studying highly correlated systems, especially since it was proven capable of measuring low-energy magnetic excitations. However, despite high expectations for experimental evidence of novel magnetic phases at high pressure, unequivocal low-energy spectral signatures remain obscured by extrinsic scattering from material surrounding the sample in a diamond anvil cell (DAC): pressure media, Be gasket and the diamond anvils themselves. A scattered X-ray collimation based medium-energy resolution (∼100 meV) analyzer system for a RIXS spectrometer at the Ir L3-absorption edge has been designed and built to remediate these difficulties. Due to the confocal nature of the analyzer system, the majority of extrinsic scattering is rejected, yielding a clean low-energy excitation spectrum of an iridate Sr2IrO4 sample in a DAC cell. Furthermore, the energy resolution of different configurations of the collimating and analyzing optics are discussed.

4.
J Synchrotron Radiat ; 25(Pt 2): 373-377, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488915

RESUMEN

A novel diced spherical quartz analyzer for use in resonant inelastic X-ray scattering (RIXS) is introduced, achieving an unprecedented energy resolution of 10.53 meV at the Ir L3 absorption edge (11.215 keV). In this work the fabrication process and the characterization of the analyzer are presented, and an example of a RIXS spectrum of magnetic excitations in a Sr3Ir2O7 sample is shown.

5.
J Synchrotron Radiat ; 25(Pt 4): 1030-1035, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29979164

RESUMEN

In the context of a novel, high-resolution resonant inelastic X-ray scattering spectrometer, a flat-crystal-based quartz analyzer system has recently been demonstrated to provide an unprecedented intrinsic-energy resolution of 3.9 meV at the Ir L3 absorption edge (11.215 keV) [Kim et al. (2018) Sci. Rep. 8, 1958]. However, the overall instrument resolution was limited to 9.7 meV because of an 8.9 meV incident band pass, generated by the available high-resolution four-bounce Si(844) monochromator. In order to better match the potent resolving power of the novel analyzer with the energy band pass of the incident beam, a quartz(309)-based double-bounce, high-resolution monochromator was designed and implemented, expected to yield an overall instrument resolution of 6.0 meV. The choice of lower-symmetry quartz is very attractive because of its wealth of suitable near-backscattering reflections. However, it was found that during room-temperature operation typical levels of incident power, barely affecting the Si monochromator, caused substantial thermal distortions in the first crystal of the quartz monochromator, rendering it practically unusable. Finite-element analyses and heat-flow analyses corroborate this finding. As a high-flux, lower resolution (15.8 meV) alternative, a two-bounce sapphire(078) version was also tested and found to be less affected than quartz, but notably more than silicon.

6.
Phys Rev Lett ; 120(17): 177203, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29756838

RESUMEN

We report a resonant inelastic x-ray scattering study of the magnetic excitation spectrum in a highly insulating Eu_{2}Ir_{2}O_{7} single crystal that exhibits a metal-insulator transition at T_{MI}=111(7) K. A propagating magnon mode with a 20 meV bandwidth and a 28 meV magnon gap is found in the excitation spectrum at 7 K, which is expected in the all-in-all-out magnetically ordered state. This magnetic excitation exhibits substantial softening as the temperature is raised towards T_{MI} and turns into a highly damped excitation in the paramagnetic phase. Remarkably, the softening occurs throughout the whole Brillouin zone including the zone boundary. This observation is inconsistent with the magnon renormalization expected in a local moment system and indicates that the strength of the electron correlation in Eu_{2}Ir_{2}O_{7} is only moderate, so that electron itinerancy should be taken into account in describing its magnetism.

7.
J Am Chem Soc ; 138(34): 11017-30, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27515121

RESUMEN

The formation of high-valent states is a key factor in making highly active transition-metal-based catalysts of the oxygen evolution reaction (OER). These high oxidation states will be strongly influenced by the local geometric and electronic structures of the metal ion, which are difficult to study due to spectroscopically active and complex backgrounds, short lifetimes, and limited concentrations. Here, we use a wide range of complementary X-ray spectroscopies coupled to DFT calculations to study Co(III)4O4 cubanes and their first oxidized derivatives, which provide insight into the high-valent Co(IV) centers responsible for the activity of molecular and heterogeneous OER catalysts. The combination of X-ray absorption and 1s3p resonant inelastic X-ray scattering (Kß RIXS) allows Co(IV) to be isolated and studied against a spectroscopically active Co(III) background. Co K- and L-edge X-ray absorption data allow for a detailed characterization of the 3d-manifold of effectively localized Co(IV) centers and provide a direct handle on the t2g-based redox-active molecular orbital. Kß RIXS is also shown to provide a powerful probe of Co(IV), and specific spectral features are sensitive to the degree of oxo-mediated metal-metal coupling across Co4O4. Guided by the data, calculations show that electron-hole delocalization can actually oppose Co(IV) formation. Computational extension of Co4O4 to CoM3O4 structures (M = redox-inactive metal) defines electronic structure contributions to Co(IV) formation. Redox activity is shown to be linearly related to covalency, and M(III) oxo inductive effects on Co(IV) oxo bonding can tune the covalency of high-valent sites over a large range and thereby tune E(0) over hundreds of millivolts. Additionally, redox-inactive metal substitution can also switch the ground state and modify metal-metal and antibonding interactions across the cluster.

8.
J Synchrotron Radiat ; 23(Pt 4): 880-6, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27359136

RESUMEN

Advances in resonant inelastic X-ray scattering (RIXS) have come in lockstep with improvements in energy resolution. Currently, the best energy resolution at the Ir L3-edge stands at ∼25 meV, which is achieved using a diced Si(844) spherical crystal analyzer. However, spherical analyzers are limited by their intrinsic reflection width. A novel analyzer system using multiple flat crystals provides a promising way to overcome this limitation. For the present design, an energy resolution at or below 10 meV was selected. Recognizing that the angular acceptance of flat crystals is severely limited, a collimating element is essential to achieve the necessary solid-angle acceptance. For this purpose, a laterally graded, parabolic, multilayer Montel mirror was designed for use at the Ir L3-absorption edge. It provides an acceptance larger than 10 mrad, collimating the reflected X-ray beam to smaller than 100 µrad, in both vertical and horizontal directions. The performance of this mirror was studied at beamline 27-ID at the Advanced Photon Source. X-rays from a diamond (111) monochromator illuminated a scattering source of diameter 5 µm, generating an incident beam on the mirror with a well determined divergence of 40 mrad. A flat Si(111) crystal after the mirror served as the divergence analyzer. From X-ray measurements, ray-tracing simulations and optical metrology results, it was established that the Montel mirror satisfied the specifications of angular acceptance and collimation quality necessary for a high-resolution RIXS multi-crystal analyzer system.

9.
Phys Rev Lett ; 116(21): 216402, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27284666

RESUMEN

The spin-orbit Mott insulator Sr_{3}Ir_{2}O_{7} provides a fascinating playground to explore insulator-metal transition driven by intertwined charge, spin, and lattice degrees of freedom. Here, we report high-pressure electric resistance and resonant inelastic x-ray scattering measurements on single-crystal Sr_{3}Ir_{2}O_{7} up to 63-65 GPa at 300 K. The material becomes a confined metal at 59.5 GPa, showing metallicity in the ab plane but an insulating behavior along the c axis. Such an unusual phenomenon resembles the strange metal phase in cuprate superconductors. Since there is no sign of the collapse of spin-orbit or Coulomb interactions in x-ray measurements, this novel insulator-metal transition is potentially driven by a first-order structural change at nearby pressures. Our discovery points to a new approach for synthesizing functional materials.

10.
J Am Chem Soc ; 136(52): 18087-99, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25475739

RESUMEN

Axial Cu-S(Met) bonds in electron transfer (ET) active sites are generally found to lower their reduction potentials. An axial S(Met) bond is also present in cytochrome c (cyt c) and is generally thought to increase the reduction potential. The highly covalent nature of the porphyrin environment in heme proteins precludes using many spectroscopic approaches to directly study the Fe site to experimentally quantify this bond. Alternatively, L-edge X-ray absorption spectroscopy (XAS) enables one to directly focus on the 3d-orbitals in a highly covalent environment and has previously been successfully applied to porphyrin model complexes. However, this technique cannot be extended to metalloproteins in solution. Here, we use metal K-edge XAS to obtain L-edge like data through 1s2p resonance inelastic X-ray scattering (RIXS). It has been applied here to a bis-imidazole porphyrin model complex and cyt c. The RIXS data on the model complex are directly correlated to L-edge XAS data to develop the complementary nature of these two spectroscopic methods. Comparison between the bis-imidazole model complex and cyt c in ferrous and ferric oxidation states show quantitative differences that reflect differences in axial ligand covalency. The data reveal an increased covalency for the S(Met) relative to N(His) axial ligand and a higher degree of covalency for the ferric states relative to the ferrous states. These results are reproduced by DFT calculations, which are used to evaluate the thermodynamics of the Fe-S(Met) bond and its dependence on redox state. These results provide insight into a number of previous chemical and physical results on cyt c.


Asunto(s)
Citocromos c/química , Imidazoles/química , Hierro/química , Metaloporfirinas/química , Metionina/química , Difracción de Rayos X , Citocromos c/metabolismo , Transporte de Electrón , Metaloporfirinas/metabolismo , Teoría Cuántica
11.
J Synchrotron Radiat ; 20(Pt 1): 74-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23254658

RESUMEN

Resonant inelastic X-ray scattering (RIXS) experiments require special sets of near-backscattering spherical diced analyzers and high-resolution monochromators for every distinct absorption-edge energy and emission line. For the purpose of aiding the design and planning of efficient RIXS experiments, comprehensive lists of suitable analyzer reflections for silicon, germanium, α-quartz, sapphire and lithium niobate crystals were compiled for a multitude of absorption edges and emission lines. Analyzers made from lithium niobate, sapphire or α-quartz offer many choices of reflections with intrinsic resolutions currently unattainable from silicon or germanium. In some cases these materials offer higher intensities at comparable resolutions. While lithium niobate, sapphire or α-quartz analyzers are still in an early stage of development, the present compilation can serve as a computational basis for assessing expected and actual performance. With regard to high-resolution monochromators, bandpass and throughput calculations for combinations of double-crystal, high-heat-load and near-backscattering high-resolution channel-cuts were assembled. The compilation of these analyzer and monochromator data is publicly available on a website.

12.
J Phys Chem Lett ; 14(1): 41-48, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36566390

RESUMEN

Enzyme reactivity is often enhanced by changes in oxidation state, spin state, and metal-ligand covalency of associated metallocofactors. The development of spectroscopic methods for studying these processes coincidentally with structural rearrangements is essential for elucidating metalloenzyme mechanisms. Herein, we demonstrate the feasibility of collecting X-ray emission spectra of metalloenzyme crystals at a third-generation synchrotron source. In particular, we report the development of a von Hamos spectrometer for the collection of Fe Kß emission optimized for analysis of dilute biological samples. We further showcase its application in crystals of the immunosuppressive heme-dependent enzyme indoleamine 2,3-dioxygenase. Spectra from protein crystals in different states were compared with relevant reference compounds. Complementary density functional calculations assessing covalency support our spectroscopic analysis and identify active site conformations that correlate to high- and low-spin states. These experiments validate the suitability of an X-ray emission approach for determining spin states of previously uncharacterized metalloenzyme reaction intermediates.


Asunto(s)
Hemo , Metaloproteínas , Hemo/metabolismo , Espectrometría por Rayos X , Metales , Dominio Catalítico
13.
J Phys Condens Matter ; 32(13): 135601, 2020 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-31791029

RESUMEN

We present a study of resonant inelastic x-ray scattering (RIXS) spectra collected at the rare-earth L edges of divalent hexaborides YbB6 and EuB6. In both systems, RIXS-active features are observed at two distinct resonances separated by [Formula: see text] eV in incident energy, with angle-dependence suggestive of distinct photon scattering processes. RIXS spectra collected at the divalent absorption peak resemble the unoccupied 5d density of states calculated using density functional theory. We discuss possible origins of this correspondence including a scenario which changes the 4f  valence. In addition, anomalous resonant scattering is observed at higher incident energy, where no corresponding absorption feature is present. Our results demonstrate the potential for L-edge RIXS to assess the itinerant-state properties of f -electron materials.

14.
Nat Commun ; 8(1): 782, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28978909

RESUMEN

Strong spin-orbit coupling lifts the degeneracy of t 2g orbitals in 5d transition-metal systems, leaving a Kramers doublet and quartet with effective angular momentum of J eff = 1/2 and 3/2, respectively. These spin-orbit entangled states can host exotic quantum phases such as topological Mott state, unconventional superconductivity, and quantum spin liquid. The lacunar spinel GaTa4Se8 was theoretically predicted to form the molecular J eff = 3/2 ground state. Experimental verification of its existence is an important first step to exploring the consequences of the J eff = 3/2 state. Here, we report direct experimental evidence of the J eff = 3/2 state in GaTa4Se8 by means of excitation spectra of resonant inelastic X-ray scattering at the Ta L3 and L2 edges. We find that the excitations involving the J eff = 1/2 molecular orbital are absent only at the Ta L2 edge, manifesting the realization of the molecular J eff = 3/2 ground state in GaTa4Se8.The strong interaction between electron spin and orbital degrees of freedom in 5d oxides can lead to exotic electronic ground states. Here the authors use resonant inelastic X-ray scattering to demonstrate that the theoretically proposed J eff = 3/2 state is realised in GaTa4Se8.

15.
J Phys Chem Lett ; 8(12): 2584-2589, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28524662

RESUMEN

Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [MnIV(OH)2(Me2EBC)]2+ and [MnIV(O)(OH)(Me2EBC)]+, the second of which contains a key MnIV═O structural fragment. Despite having the same formal oxidation state (MnIV) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield different localized spin densities for the two complexes resulting from MnIV-OH conversion to MnIV═O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. A model of the S3 intermediate state of photosystem II containing a MnIV═O fragment is compared to recent time-resolved X-ray diffraction data of the same state.

16.
Rev Sci Instrum ; 87(8): 083107, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27587100

RESUMEN

Resonant Inelastic X-ray Scattering (RIXS) is a powerful probe for studying electronic excitations in materials. Standard high energy RIXS measurements do not measure the polarization of the scattered x-rays, which is unfortunate since it carries information about the nature and symmetry of the excitations involved in the scattering process. Here we report the fabrication of thin Si-based polarization analyzers with a double-concave toroidal surface, useful for L-edge RIXS studies in heavier atoms such as the 5-d transition metals.

17.
Rev Sci Instrum ; 82(11): 113108, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22128967

RESUMEN

Resonant inelastic x-ray scattering (RIXS) is a powerful technique for studying electronic excitations in correlated electron systems. Current RIXS spectrometers measure the changes in energy and momentum of the photons scattered by the sample. A powerful extension of the RIXS technique is the measurement of the polarization state of the scattered photons which contains information about the symmetry of the excitations. This long-desired addition has been elusive because of significant technical challenges. This paper reports the development of a new diffraction-based polarization analyzer which discriminates between linear polarization components of the scattered photons. The double concave surface of the polarization analyzer was designed as a good compromise between energy resolution and throughput. Such a device was fabricated using highly oriented pyrolytic graphite for measurements at the Cu K-edge incident energy. Preliminary measurements on a CuGeO(3) sample are presented.

18.
Science ; 330(6005): 805-8, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-21051634

RESUMEN

Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α(g)* (k,ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.

19.
Adv Mater ; 22(10): 1141-7, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20401938

RESUMEN

A new method for imaging ultrafast dynamics in condensed matter using inelastic X-ray scattering (IXS) is described. Using the concepts of causality and irreversibility a general solution to the inverse scattering problem (or "phase problem") for IXS is illustrated, which enables direct imaging of dynamics of the electron density with resolutions of approximately 1 attosecond (10(-18) s) in time and <1 A in space. This method is not just Fourier transformation of the IXS data, but a means to impose causality on the data and reconstruct the charge propagator. The method can also be applied to inelastic electron or neutron scattering. A general outline of phenomena that can and cannot be studied with this technique and an outlook for the future is provided.


Asunto(s)
Dispersión de Radiación , Algoritmos , Elasticidad , Electrones , Análisis de Fourier , Neutrones , Rayos X
20.
J Am Chem Soc ; 129(20): 6453-60, 2007 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-17465544

RESUMEN

A complete, continuous transition from discrete macroions to blackberry structures, and then back to discrete macroions, is reported for the first time in the system of {Mo132}/water/acetone, with {Mo132} (full formula (NH4)42[Mo132O372(CH3COO)30(H2O)72].ca.300H2O.ca.10CH3COONH4) as the C60-like anionic polyoxomolybdate molecular clusters. Laser light scattering studies reveal the presence of the self-assembled {Mo132} blackberry structures in water/acetone mixed solvents containing 3 vol % to 70 vol % acetone, with the average hydrodynamic radius (Rh) of blackberries ranging from 45 to 100 nm with increasing acetone content. Only discrete {Mo132} clusters are found in solutions containing <3 vol % and >70 vol % acetone. The complete discrete macroion (cluster)-blackberry-discrete macroion transition helps to identify the driving forces behind the blackberry formation, a new type of self-assembly process. The charge density on the macroions is found to greatly affect the blackberry formation and dissociation, as the counterion association is very dominant around blackberries. The transitions between single {Mo132} clusters and blackberries, and between the blackberries with different sizes, are achieved by only changing the solvent quality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA