Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Sens ; 9(2): 830-839, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38320174

RESUMEN

Carbon dioxide (CO2) is a major greenhouse gas responsible for global warming and climate change. The development of sensitive CO2 sensors is crucial for environmental and industrial applications. This paper presents a novel CO2 sensor based on perovskite nanocrystals immobilized on graphene and functionalized with oxygen plasma treatment. The impact of this post-treatment method was thoroughly investigated using various characterization techniques, including Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The detection of CO2 at parts per million (ppm) levels demonstrated that the hybrids subjected to 5 min of oxygen plasma treatment exhibited a 3-fold improvement in sensing performance compared to untreated layers. Consequently, the CO2 sensing capability of the oxygen-treated samples showed a limit of detection and limit of quantification of 6.9 and 22.9 ppm, respectively. Furthermore, the influence of ambient moisture on the CO2 sensing performance was also evaluated, revealing a significant effect of oxygen plasma treatment.


Asunto(s)
Compuestos de Calcio , Grafito , Nanocompuestos , Óxidos , Titanio , Dióxido de Carbono/química , Oxígeno , Grafito/química , Nanocompuestos/química
2.
ACS Sens ; 9(8): 4079-4088, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39057835

RESUMEN

Ambient pressure X-ray photoelectron spectroscopy (APXPS) is combined with simultaneous electrical measurements and supported by density functional theory calculations to investigate the sensing mechanism of tungsten disulfide (WS2)-based gas sensors in an operando dynamic experiment. This approach allows for the direct correlation between changes in the surface potential and the resistivity of the WS2 sensing active layer under realistic operating conditions. Focusing on the toxic gases NO2 and NH3, we concurrently demonstrate the distinct chemical interactions between oxidizing or reducing agents and the WS2 active layer and their effect on the sensor response. The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations. This methodology applied to NH3 concentrations of 100, 230, and 760 and 14 ppm of NO2 establishes a benchmark for future APXPS studies on sensing devices, providing fast acquisition times and a 1:1 correlation between electrical response and spectroscopy data in operando conditions. Our findings contribute to a deeper understanding of the sensing mechanism in 2D transition metal dichalcogenides, paving the way for optimizing chemiresistor sensors for various industrial applications and wireless platforms with low energy consumption.


Asunto(s)
Amoníaco , Espectroscopía de Fotoelectrones , Amoníaco/análisis , Amoníaco/química , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/química , Compuestos de Tungsteno/química , Teoría Funcional de la Densidad , Presión , Gases/análisis , Gases/química , Tungsteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA