Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Clin Med ; 9(7)2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630240

RESUMEN

BACKGROUND: Current therapeutic options in the course of metastatic castration-resistant prostate cancers (mCRPC) reinforce the need for reliable tools to characterize the tumor in a dynamic way. Circulating tumor cells (CTCs) have emerged as a viable solution to the problem, whereby patients with a variety of solid tumors, including PC, often do not have recent tumor tissue available for analysis. The biomarker characterization in CTCs could provide insights into the current state of the disease and an overall picture of the intra-tumor heterogeneity. METHODS: in the present study, we applied a global gene expression characterization of the CTC population from mCRPC (n = 9), with the goal to better understand the biology of these cells and identify the relevant molecules favoring this tumor progression. RESULTS: This analysis allowed the identification of 50 genes specifically expressed in CTCs from patients. Six of these markers (HOXB13, QKI, MAOA, MOSPD1, SDK1, and FGD4), were validated in a cohort of 28 mCRPC, showing clinical interest for the management of these patients. Of note, the activity of this CTC signature was related to the regulation of MYC, a gene strongly implicated in the biology of mCRPC. CONCLUSIONS: Overall, our results represent new evidence on the great value of CTCs as a non-invasive biopsy to characterize PC.

2.
Oncotarget ; 8(33): 54708-54721, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28903376

RESUMEN

INTRODUCTION: There is a critical need of new surrogate markers for improving the therapeutic selection and monitoring of metastatic prostate cancer patients. Nowadays clinical management of these patients is been driven by biochemical and clinical parameters without enough accuracy to allow a real personalized medicine. The present study was conducted to go insight the molecular profile of circulating tumor cells (CTCs) isolated from advanced metastatic castration-resistant prostate cancer (mCRPC) with the aim of identifying prognostic marker with potential utility for therapy selection and monitoring. MATERIALS AND METHODS: CTCs isolation was carried out in peripheral blood samples from 29 mCRPC patients that undergo systemic chemotherapy based on taxanes (docetaxel/cabazitaxel) and 19 healthy controls using in parallel CellSearch and an alternative EpCAM-based immunoisolation followed by RT-qPCR analysis to characterize the CTC population. A panel of 17 genes related with prostate biology, hormone regulation, stem properties, tumor aggressiveness and taxanes responsiveness was analysed to identify an expression signature characterizing the CTCs. RESULTS: Patients with ≥ 5 CTCs/7.5ml of peripheral blood at baseline and during the treatment showed lower progression free survival (PFS) and overall survival (OS). Changes of CTCs levels during the treatment were also associated with the patient's outcome. These results confirmed previous data obtained using CellSearch in mCRPC. In addition, we found a CTC profile mainly characterized by the expression of relevant genes for the hormone dependent regulation of PCa such as AR and CYP19 together with genes strongly implicated in PCa progression and resistance development such as BIRC5, TUB1A, GDF15, RAB7 and SPINK1. Our gene-expression profiling also permitted the identification of valuable prognostic biomarkers. Thus, high levels of AR, CYP19 and GDF15 were associated with poor PFS rates while AR, GDF15 and BIRC5 were also found as reliable predictors of OS. Besides, a logistic model using KLK3 and BIRC5 showed a high specificity and sensitivity compared to CellSearch to discriminate patients with a more aggressive evolution. CONCLUSIONS: The molecular characterization of CTCs from advanced mCRPC patients provided with a panel of specific biomarkers, including genes related to taxanes resistance, with a promising applicability as "liquid biopsy" for the management of these patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA