Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38473321

RESUMEN

Non-coding RNAs provide new opportunities to identify biomarkers that properly classify cancer patients. Here, we study the biomarker status of the mitochondrial long non-coding RNAs, MDL1 and MDL1AS. Expression of these genes was studied in public transcriptomic databases. In addition, a cohort of 69 locally advanced rectal cancer (LARC) patients with a follow-up of more than 5 years was used to determine the prognostic value of these markers. Furthermore, cell lines of colorectal (HCT116) and breast (MDA-MB-231) carcinoma were employed to study the effects of downregulating MDL1AS in vitro. Expression of MDL1AS (but not MDL1) was significantly different in tumor cells than in the surrounding tissue in a tumor-type-specific context. Both MDL1 and MDL1AS were accurate biomarkers for the 5-year survival of LARC patients (p = 0.040 and p = 0.007, respectively) with promising areas under the curve in the ROC analyses (0.820 and 0.930, respectively). MDL1AS downregulation reduced mitochondrial respiration in both cell lines. Furthermore, this downregulation produced a decrease in growth and migration on colorectal cells, but the reverse effects on breast cancer cells. In summary, MDL1 and MDL1AS can be used as reliable prognostic biomarkers of LARC, and MDL1AS expression provides relevant information on the diagnosis of different cancers.

2.
Cancers (Basel) ; 15(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345199

RESUMEN

Approximately a century ago, Otto Warburg discovered that cancer cells use a fermentative rather than oxidative metabolism even though the former is more inefficient in terms of energy production per molecule of glucose. Cancer cells increase the use of this fermentative metabolism even in the presence of oxygen, and this process is called aerobic glycolysis or the Warburg effect. This alternative metabolism is mainly characterized by higher glycolytic rates, which allow cancer cells to obtain higher amounts of total ATP, and the production of lactate, but there are also an activation of protumoral signaling pathways and the generation of molecules that favor cancer progression. One of these molecules is succinate, a Krebs cycle intermediate whose concentration is increased in cancer and which is considered an oncometabolite. Several protumoral actions have been associated to succinate and its role in several cancer types has been already described. Despite playing a major role in metabolism and cancer, so far, the potential of succinate as a target in cancer prevention and treatment has remained mostly unexplored, as most previous Warburg-directed anticancer strategies have focused on other intermediates. In this review, we aim to summarize succinate's protumoral functions and discuss the use of succinate expression regulators as a potential cancer therapy strategy.

3.
Elife ; 122023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37490401

RESUMEN

Somatosensory information is processed by a complex network of interneurons in the spinal dorsal horn. It has been reported that inhibitory interneurons that express neuropeptide Y (NPY), either permanently or during development, suppress mechanical itch, with no effect on pain. Here, we investigate the role of interneurons that continue to express NPY (NPY-INs) in the adult mouse spinal cord. We find that chemogenetic activation of NPY-INs reduces behaviours associated with acute pain and pruritogen-evoked itch, whereas silencing them causes exaggerated itch responses that depend on cells expressing the gastrin-releasing peptide receptor. As predicted by our previous studies, silencing of another population of inhibitory interneurons (those expressing dynorphin) also increases itch, but to a lesser extent. Importantly, NPY-IN activation also reduces behavioural signs of inflammatory and neuropathic pain. These results demonstrate that NPY-INs gate pain and itch transmission at the spinal level, and therefore represent a potential treatment target for pathological pain and itch.


Asunto(s)
Neuralgia , Neuropéptido Y , Ratones , Animales , Neuropéptido Y/genética , Asta Dorsal de la Médula Espinal/patología , Prurito/patología , Interneuronas/fisiología , Médula Espinal/fisiología
4.
Drug Discov Today ; 27(3): 743-758, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34838727

RESUMEN

Over the past 20 years, various studies have demonstrated a pivotal role of T-type calcium channels (TTCCs) in tumor progression. Cytotoxic effects of TTCC pharmacological blockers have been reported in vitro and in preclinical models. However, their roles in cancer physiology are only beginning to be understood. In this review, we discuss evidence for the signaling pathways and cellular processes stemming from TTCC activity, mainly inferred by inverse reasoning from pharmacological blocks and, only in a few studies, by gene silencing or channel activation. A thorough analysis indicates that drug-induced cytotoxicity is partially an off-target effect. Dissection of on/off-target activity is paramount to elucidate the physiological roles of TTCCs, and to deliver efficacious therapies suited to different cancer types and stages.


Asunto(s)
Antineoplásicos , Canales de Calcio Tipo T , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal
5.
Sci Rep ; 10(1): 13176, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764601

RESUMEN

Dorsal horn excitatory interneurons that express gastrin-releasing peptide (GRP) are part of the circuit for pruritogen-evoked itch. They have been extensively studied in a transgenic line in which enhanced green fluorescent protein (eGFP) is expressed under control of the Grp gene. The GRP-eGFP cells are separate from several other neurochemically-defined excitatory interneuron populations, and correspond to a class previously defined as transient central cells. However, mRNA for GRP is widely distributed among excitatory interneurons in superficial dorsal horn. Here we show that although Grp mRNA is present in several transcriptomically-defined populations, eGFP is restricted to a discrete subset of cells in the GRP::eGFP mouse, some of which express the neuromedin receptor 2 and likely belong to a cluster defined as Glut8. We show that these cells receive much of their excitatory synaptic input from MrgA3/MrgD-expressing nociceptive/pruritoceptive afferents and C-low threshold mechanoreceptors. Although the cells were not innervated by pruritoceptors expressing brain natriuretic peptide (BNP) most of them contained mRNA for NPR1, the receptor for BNP. In contrast, these cells received only ~ 10% of their excitatory input from other interneurons. These findings demonstrate that the GRP-eGFP cells constitute a discrete population of excitatory interneurons with a characteristic pattern of synaptic input.


Asunto(s)
Proteínas Fluorescentes Verdes/genética , Interneuronas/citología , Interneuronas/metabolismo , Sustancia Gelatinosa/metabolismo , Animales , Expresión Génica , Ratones , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA