RESUMEN
The visible-light-driven rotation of an overcrowded alkene-based molecular motor strut in a dual-function metal-organic framework (MOF) is reported. Two types of functional linkers, a palladium-porphyrin photosensitizer and a bispyridine-derived molecular motor, were used to construct the framework capable of harvesting low-energy green light to power the rotary motion. The molecular motor was introduced in the framework using the postsynthetic solvent-assisted linker exchange (SALE) method, and the structure of the material was confirmed by powder (PXRD) and single-crystal X-ray (SC-XRD) diffraction. The large decrease in the phosphorescence lifetime and intensity of the porphyrin in the MOFs upon introduction of the molecular motor pillars confirms efficient triplet-to-triplet energy transfer between the porphyrin linkers and the molecular motor. Near-infrared Raman spectroscopy revealed that the visible light-driven rotation of the molecular motor proceeds in the solid state at rates similar to those observed in solution.
RESUMEN
A metal organic framework (MOF) engineered to contain in its scaffold rod-like struts featuring ultrafast molecular rotors showed extremely rapid 180 ° flip reorientation with rotational rates of 1011 â Hz at 150â K. Crystal-pore accessibility of the MOF allowed the CO2 molecules to enter the cavities and control the rotor spinning speed down to 105 â Hz at 150â K. Rotor dynamics, as modulated by CO2 loading/unloading in the porous crystals, was described by proton T1 and 2 Hâ NMR spectroscopy. This strategy enabled the regulation of rotary motion by the diffusion of the gas within the channels and the determination of the energetics of rotary dynamics in the presence of CO2 .
RESUMEN
PURPOSE: The existence of tumor-initiating cells in breast cancer has profound implications for cancer therapy. In this study, we investigated the sensitivity of tumor-initiating cells isolated from human epidermal growth factor receptor type 2 (HER2)-overexpressing carcinoma cell lines to trastuzumab, a compound used for the targeted therapy of breast cancer. EXPERIMENTAL DESIGN: Spheres were analyzed by indirect immunofluorescence for HER2 cell surface expression and by real-time PCR for HER2 mRNA expression in the presence or absence of the Notch1 signaling inhibitor (GSI) or Notch1 small interfering RNA. Xenografts of HER2-overexpressing breast tumor cells were treated with trastuzumab or doxorubicin. The sphere-forming efficiency (SFE) and serial transplantability of tumors were assessed. RESULTS: In HER2-overexpressing carcinoma cell lines, cells with tumor-initiating cell properties presented increased HER2 levels compared with the bulk cell population without modification in HER2 gene amplification. HER2 levels were controlled by Notch1 signaling, as shown by the reduction of HER2 cell surface expression and lower SFE following gamma-secretase inhibition or Notch1 specific silencing. We also show that trastuzumab was able to effectively target tumor-initiating cells of HER2-positive carcinoma cell lines, as indicated by the significant decrease in SFE and the loss of serial transplantability, following treatment of HER2-overexpressing xenotransplants. CONCLUSIONS: Here, we provide evidence for the therapeutic efficacy of trastuzumab in debulking and in targeting tumor-initiating cells of HER2-overexpressing tumors. We also propose that Notch signaling regulates HER2 expression, thereby representing a critical survival pathway of tumor-initiating cells.
Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/análisis , Animales , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Humanos , Lapatinib , Ratones , Quinazolinas/farmacología , ARN Mensajero/análisis , Receptor ErbB-2/genética , Receptor Notch1/fisiología , Trastuzumab , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
The incorporation of photoswitchable molecules into solid-state materials holds promise for the fabrication of responsive materials, the properties of which can be controlled on-demand. However, the possible applications of these materials are limited due to the restrictions imposed by the solid-state environment on the incorporated photoswitches, which render the photoisomerization inefficient. Here we present responsive porous switchable framework materials based on a bistable chiroptical overcrowded alkene incorporated in the backbone of a rigid aromatic framework. As a consequence of the high intrinsic porosity, the resulting framework readily responds to a light stimulus, as demonstrated by solid-state Raman and reflectance spectroscopies. Solid-state 13C NMR spectroscopy highlights an efficient and quantitative bulk photoisomerization of the incorporated light-responsive overcrowded olefins in the solid material. Taking advantage of the quantitative photoisomerization, the porosity of the framework and the consequent gas adsorption can be reversibly modulated in response to light and heat.
RESUMEN
Doxorubicin treatment was found to augment the expression of the extracellular matrix (ECM) protein fibulin-1 in cultured human breast cancer cell lines and in MDA-MB-361 tumors grown in athymic mice. Doxorubicin was also found to augment tumor expression of the fibulin-1-binding proteins fibronectin and laminin-1. Growth of breast cancer cell lines on Matrigel, an ECM extract containing fibulin-1 and laminin-1, resulted in lower levels of doxorubicin-induced apoptosis as compared with controls. Moreover, tumors formed by injection of athymic mice with MDA-MB-361 cells mixed with Matrigel were significantly more doxorubicin resistant and displayed lower levels of apoptosis compared with those that formed in the absence of Matrigel. Monoclonal antibodies against fibulin-1 reversed Matrigel-dependent doxorubicin resistance. Furthermore, small interfering RNA-mediated suppression of fibulin-1 expression in breast cancer cells resulted in a 10-fold increase in doxorubicin sensitivity as compared with control cells. Together, these findings point to a role for fibulin-1 in breast cancer chemoresistance.
Asunto(s)
Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas de Unión al Calcio/fisiología , Doxorrubicina/farmacología , Animales , Neoplasias de la Mama/patología , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , ARN Interferente Pequeño/genética , TransfecciónRESUMEN
PURPOSE: Neither hormone-related nor genetics risk factors have been associated with the development of highly proliferative HER2-positive breast carcinomas. Because the majority of HER2-positive tumors present the amplification of the oncogene, we asked whether genomic instability triggered by irradiation might be involved in the induction of HER2-overexpressing breast carcinomas. EXPERIMENTAL DESIGN: Sixty-six infiltrating breast carcinomas from patients treated with radiation therapy for Hodgkin's lymphoma or other pediatric solid tumors and a control series of 61 consecutive sporadic breast tumors were analyzed by immunohistochemistry for HER2 expression with HercepTest. A panel of antibodies against estrogen receptor, progesterone receptor, c-kit, cytokeratin 5/6, p53, and ki67 antigen was also used to identify differentiation subsets and molecular characteristics of the analyzed breast carcinomas. RESULTS: Although no differences between the two tumor series were found with respect to HER2 expression scored 2+ and 3+, the percentage of 3+ HER2-positive tumors was significantly higher in patients irradiated during breast maturation compared with patients irradiated after breast maturation (35.3% versus 12.5%, P = 0.046). In the latter group, 52.5% of the breast carcinomas showed basal-like differentiation (estrogen receptor, progesterone receptor, and HER2 negative) versus only 5.9% in the group irradiated during breast development (P < 0.0001). Analysis adjusted for age confirmed the significant increase in basal-like tumor development in patients irradiated within 4 years of menarche, but also showed that the differences between patients irradiated before and after puberty in HER2 3+ tumor frequencies are due to age-related differences in HER2 3+ tumor onset. CONCLUSION: Together, our data indicate that the development of HER2-positive tumors correlates with timing rather than type of carcinogenic hits and provide clear evidence that radiation is a risk factor for breast carcinomas showing basal-like differentiation.
Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Mama/efectos de la radiación , Regulación Neoplásica de la Expresión Génica , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/radioterapia , Neoplasias/radioterapia , Receptor ErbB-2/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Mama/patología , Neoplasias de la Mama/secundario , Línea Celular Tumoral , Niño , Progresión de la Enfermedad , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Neoplasias/patología , Factores de RiesgoRESUMEN
The 67-kDa laminin receptor (67LR) is a high-affinity laminin-binding protein that is overexpressed on the tumor cell surface in a variety of cancers. We report here that the 67LR molecule also functions in the proteolytic cleavage of laminin-1, a relevant event in basement membrane degradation and tumor dissemination. In the presence of a synthetic peptide (peptide G) corresponding to the 67LR laminin binding site, the rate of laminin-1 degradation by the cysteine proteinase cathepsin B was significantly increased, and a new proteolytic fragment particularly active in in vitro cell migration assays was generated. The YIGSR peptide, corresponding to the 67LR binding site on laminin-1, blocked the peptide G-dependent proteolytic degradation. Our results shed light on the mechanism by which an adhesion receptor such as the 67LR plays a major role in tumor aggressiveness and metastasis.
Asunto(s)
Laminina/metabolismo , Neoplasias/patología , Receptores de Laminina/fisiología , Secuencia de Aminoácidos , Animales , Adhesión Celular , División Celular , Movimiento Celular , Femenino , Humanos , Ratones , Datos de Secuencia Molecular , Peso Molecular , Células Tumorales CultivadasRESUMEN
PURPOSE: To elucidate the mechanism by which trastuzumab, a humanized monoclonal antibody against HER2 with proven survival benefit in women with HER2-positive metastatic breast cancer, mediates its antitumor activity. EXPERIMENTAL DESIGN: A pilot study including 11 patients with HER2-positive tumors treated in a neo-adjuvant setting with trastuzumab was performed. Trastuzumab was administered i.v. at a dose of 4 mg/kg followed by three weekly i.v. doses of 2 mg/kg. The primary tumor was surgically removed 7 days after the last treatment. Surgical samples, tumor biopsies, and lymphocytes from these patients were collected for biological studies. RESULT: Clinical data indicated one complete pathological remission and four partial remissions using RECIST (Response Evaluation Criteria in Solid Tumors). Trastuzumab was well tolerated and neither serious adverse events nor changes in cardiac function were observed during this short-term treatment and after surgery. The biological data showed that, independent of response, (a) all patients showed high levels of circulating trastuzumab; (b) saturating level of trastuzumab was present in all of the tumors; (c) no down-modulation of HER2 was observed in any tumors; (d) no changes in vessel diameter was observed in any tumors; (e) no changes in proliferation was observed in any tumors; and (f) a strong infiltration by lymphoid cells was observed in all cases. Patients with complete remission or partial remission were found to have a higher in situ infiltration of leukocytes and a higher capability to mediate in vitro antibody-dependent cellular cytotoxicity activity. CONCLUSIONS: The results of this pilot study argue against trastuzumab activity in patients through down-modulation of HER2 but in favor of antibody-dependent cellular cytotoxicity guiding efforts to optimize the use of trastuzumab in breast cancer patients.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/terapia , Receptor ErbB-2/metabolismo , Anticuerpos Monoclonales Humanizados , Citotoxicidad Celular Dependiente de Anticuerpos , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Linfocitos/inmunología , Linfocitos/metabolismo , Linfocitos/patología , Terapia Neoadyuvante , Proyectos Piloto , Cuidados Preoperatorios , Inducción de Remisión , TrastuzumabRESUMEN
Ron, the tyrosine kinase receptor for the Macrophage-stimulating protein, is involved in cell dissociation, motility, and matrix invasion. DeltaRon, a constitutively active isoform that confers increased motility to expressing cells, is generated through the skipping of exon 11. We show that abnormal accumulation of DeltaRon mRNA occurs in breast and colon tumors. Skipping of exon 11 is controlled by a silencer and an enhancer of splicing located in the constitutive exon 12. The strength of the enhancer parallels the relative abundance of DeltaRon mRNA and depends on a sequence directly bound by splicing factor SF2/ASF. Overexpression and RNAi experiments demonstrate that SF2/ASF, by controlling the production of DeltaRon, activates epithelial to mesenchymal transition leading to cell locomotion. The effect of SF2/ASF overexpression is reverted by specific knockdown of DeltaRon mRNA. This demonstrates a direct link between SF2/ASF-regulated splicing and cell motility, an activity important for embryogenesis, tissue formation, and tumor metastasis.
Asunto(s)
Empalme Alternativo , Movimiento Celular/fisiología , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , ARN Mensajero/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Elementos de Facilitación Genéticos , Exones , Femenino , Regulación de la Expresión Génica , Humanos , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Interferencia de ARN , Proteínas de Unión al ARN , Proteínas Tirosina Quinasas Receptoras/genética , Factores de Empalme Serina-Arginina , Distribución TisularRESUMEN
Screening of a breast cancer cDNA library from SKBR3 human breast cancer cells by SEREX (serological analysis of cDNA expression library) using a preselected serum from a breast cancer patient revealed 13 genes, two of which, INT-MI-1 and INT-MI-2, encode novel gene products, while the remaining 11 genes and their products are identical with or highly homologous to known GenBank entries. Immunoscreening of the 13 clones using 20 allogeneic sera from breast cancer patients and 20 samples from age- and gender-matched healthy donors showed that lactate dehydrogenase-A (LDH-A), lactate dehydrogenase-B (LDH-B), fibulin-1, and thyroid hormone-binding protein (THBP) were recognized principally by the breast cancer patient sera, indicating the immunogenicity of these molecules in vivo. The other antigens were similarly recognized by normal and patients sera, and thus not tumor-restricted immunologically. RT-PCR analysis revealed strong expression of fibulin-1 in tumor cell lines and surgical specimen whereas in the same experimental conditions, normal tissues scored negative. Also THBP expression was found in various tumors whereas in normal tissues, its expression is restricted to the testis and, at lower levels, in ovary, liver, and spleen. In contrast, LDH-A and LDH-B were ubiquitously expressed in normal and tumor tissues, with LDH-B levels considerably lower and heterogeneous in normal samples compared to those expressed in tumor cell lines. The differential expression of fibulin-1 between the normal tissues and breast carcinoma cell lines (5/6) and surgical specimens (5/6) suggests the possible involvement of the overexpression of this extracellular matrix-associated glycoprotein in the pathogenesis of this neoplasm.