Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS Biol ; 21(10): e3002335, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37874788

RESUMEN

The alphaproteobacterium Wolbachia pipientis infects arthropod and nematode species worldwide, making it a key target for host biological control. Wolbachia-driven host reproductive manipulations, such as cytoplasmic incompatibility (CI), are credited for catapulting these intracellular bacteria to high frequencies in host populations. Positive, perhaps mutualistic, reproductive manipulations also increase infection frequencies, but are not well understood. Here, we identify molecular and cellular mechanisms by which Wolbachia influences the molecularly distinct processes of germline stem cell (GSC) self-renewal and differentiation. We demonstrate that wMel infection rescues the fertility of flies lacking the translational regulator mei-P26 and is sufficient to sustain infertile homozygous mei-P26-knockdown stocks indefinitely. Cytology revealed that wMel mitigates the impact of mei-P26 loss through restoring proper pMad, Bam, Sxl, and Orb expression. In Oregon R files with wild-type fertility, wMel infection elevates lifetime egg hatch rates. Exploring these phenotypes through dual-RNAseq quantification of eukaryotic and bacterial transcripts revealed that wMel infection rescues and offsets many gene expression changes induced by mei-P26 loss at the mRNA level. Overall, we show that wMel infection beneficially reinforces host fertility at mRNA, protein, and phenotypic levels, and these mechanisms may promote the emergence of mutualism and the breakdown of host reproductive manipulations.


Asunto(s)
Proteínas de Drosophila , Wolbachia , Animales , Drosophila/metabolismo , Fertilidad , Diferenciación Celular , Células Germinativas/metabolismo , Células Madre/metabolismo , ARN Mensajero/metabolismo , Drosophila melanogaster/genética , Proteínas de Unión al ARN/genética , Proteínas de Drosophila/metabolismo
2.
Antimicrob Agents Chemother ; 68(2): e0104323, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38132181

RESUMEN

Multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) poses significant challenges to global tuberculosis (TB) control efforts. Host-directed therapies (HDTs) offer a novel approach to TB treatment by enhancing immune-mediated clearance of Mtb. Prior preclinical studies found that the inhibition of heme oxygenase-1 (HO-1), an enzyme involved in heme metabolism, with tin-protoporphyrin IX (SnPP) significantly reduced mouse lung bacillary burden when co-administered with the first-line antitubercular regimen. Here, we evaluated the adjunctive HDT activity of a novel HO-1 inhibitor, stannsoporfin (SnMP), in combination with a novel MDR-TB regimen comprising a next-generation diarylquinoline, TBAJ-876 (S), pretomanid (Pa), and a new oxazolidinone, TBI-223 (O) (collectively, SPaO), in Mtb-infected BALB/c mice. After 4 weeks of treatment, SPaO + SnMP 5mg/kg reduced mean lung bacillary burden by an additional 0.69 log10 (P = 0.01) relative to SPaO alone. As early as 2 weeks post-treatment initiation, SnMP adjunctive therapy differentially altered the expression of pro-inflammatory cytokine genes and CD38, a marker of M1 macrophages. Next, we evaluated the sterilizing potential of SnMP adjunctive therapy in a mouse model of microbiological relapse. After 6 weeks of treatment, SPaO + SnMP 10mg/kg reduced lung bacterial burdens to 0.71 ± 0.23 log10 colony-forming units (CFUs), a 0.78 log-fold greater decrease in lung CFU compared to SpaO alone (P = 0.005). However, adjunctive SnMP did not reduce microbiological relapse rates after 5 or 6 weeks of treatment. SnMP was well tolerated and did not significantly alter gross or histological lung pathology. SnMP is a promising HDT candidate requiring further study in combination with regimens for drug-resistant TB.


Asunto(s)
Metaloporfirinas , Mycobacterium tuberculosis , Protoporfirinas , Tuberculosis Resistente a Múltiples Medicamentos , Animales , Ratones , Metaloporfirinas/uso terapéutico , Hemo-Oxigenasa 1 , Modelos Animales de Enfermedad , Antituberculosos/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Recurrencia
3.
PLoS Genet ; 16(8): e1008935, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32841233

RESUMEN

Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.


Asunto(s)
Bacterias/patogenicidad , Bivalvos/microbiología , Transferencia de Gen Horizontal , Genoma Bacteriano , Recombinación Genética , Simbiosis/genética , Animales , Bacterias/genética , Bivalvos/genética , Evolución Molecular , Variación Genética
4.
Clin Infect Dis ; 73(9): 1580-1588, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34100919

RESUMEN

BACKGROUND: Although the incidence of tuberculosis is higher in men than in women, the relationship of sex with tuberculosis treatment outcomes has not been adequately studied. METHODS: We performed a retrospective cohort study and a systematic review and meta-analysis of observational studies during the last 10 years to assess sex differences in clinical and microbiological outcomes in tuberculosis. RESULTS: In our cohort of 2894 Taiwanese patients with drug-susceptible pulmonary tuberculosis (1975 male and 919 female), male patients had higher adjusted hazards of 9-month mortality due to all causes (hazard ratio, 1.43 [95% confidence interval (CI), 1.03-1.98]) and infections (1.70 [1.09-2.64]) and higher adjusted odds of 2-month sputum culture positivity (odds ratio [OR], 1.56 [95% CI, 1.05-2.33]) compared with female patients. Smear positivity at 2 months did not differ significantly (OR, 1.27 [95% CI, .71-2.27]) between the sexes. Among 7896 articles retrieved, 398 were included in our systematic review describing a total of 3 957 216 patients. The odds of all-cause mortality were higher in men than in women in the pooled unadjusted (OR, 1.26 [95% CI, 1.19-1.34]) and adjusted (1.31 [1.18-1.45]) analyses. Men had higher pooled odds of sputum culture (OR, 1.44 [95% CI, 1.14-1.81]) and sputum smear (1.58 [1.41-1.77]) positivity, both at the end of the intensive phase and on completion of treatment. CONCLUSIONS: Our retrospective cohort showed that male patients with tuberculosis have higher 9-month all-cause and infection-related mortality, with higher 2-month sputum culture positivity after adjustment for confounding factors. In our meta-analysis, male patients showed higher all-cause and tuberculosis-related mortality and higher sputum culture and smear positivity rates during and after tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Antituberculosos/uso terapéutico , Estudios de Cohortes , Femenino , Humanos , Masculino , Estudios Retrospectivos , Esputo , Tuberculosis/tratamiento farmacológico , Tuberculosis/epidemiología
5.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38895338

RESUMEN

Post-TB lung disease (PTLD) causes a significant burden of global disease. Fibrosis is a central component of many clinical features of PTLD. To date, we have a limited understanding of the mechanisms of TB-associated fibrosis and how these mechanisms are similar to or dissimilar from other fibrotic lung pathologies. We have adapted a mouse model of TB infection to facilitate the mechanistic study of TB-associated lung fibrosis. We find that the morphologies of fibrosis that develop in the mouse model are similar to the morphologies of fibrosis observed in human tissue samples. Using Second Harmonic Generation (SHG) microscopy, we are able to quantify a major component of fibrosis, fibrillar collagen, over time and with treatment. Inflammatory macrophage subpopulations persist during treatment; matrix remodeling enzymes and inflammatory gene signatures remain elevated. Our mouse model suggests that there is a therapeutic window during which adjunctive therapies could change matrix remodeling or inflammatory drivers of tissue pathology to improve functional outcomes after treatment for TB infection.

6.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37609351

RESUMEN

Multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) poses significant challenges to global tuberculosis (TB) control efforts. Host-directed therapies (HDT) offer a novel approach for TB treatment by enhancing immune-mediated clearance of Mtb. Prior preclinical studies found that inhibition of heme oxygenase-1 (HO-1), an enzyme involved in heme metabolism, with tin-protoporphyrin IX (SnPP) significantly reduced mouse lung bacillary burden when co-administered with the first-line antitubercular regimen. Here we evaluated the adjunctive HDT activity of a novel HO-1 inhibitor, stannsoporfin (SnMP), in combination with a novel MDR-TB regimen comprising a next-generation diarylquinoline, TBAJ-876 (S), pretomanid (Pa), and a new oxazolidinone, TBI-223 (O) (collectively, SPaO) in Mtb-infected BALB/c mice. After 4 weeks of treatment, SPaO + SnMP 5 mg/kg reduced mean lung bacillary burden by an additional 0.69 log10 (P=0.01) relative to SPaO alone. As early as 2 weeks post-treatment initiation, SnMP adjunctive therapy differentially altered the expression of pro-inflammatory cytokine genes, and CD38, a marker of M1 macrophages. Next, we evaluated the sterilizing potential of SnMP adjunctive therapy in a mouse model of microbiological relapse. After 6 weeks of treatment, SPaO + SnMP 10 mg/kg reduced lung bacterial burdens to 0.71 ± 0.23 log10 CFU, a 0.78 log-fold greater decrease in lung CFU compared to SpaO alone (P=0.005). However, adjunctive SnMP did not reduce microbiological relapse rates after 5 or 6 weeks of treatment. SnMP was well tolerated and did not significantly alter gross or histological lung pathology. SnMP is a promising HDT candidate requiring further study in combination with regimens for drug-resistant TB.

7.
Front Immunol ; 13: 972266, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189260

RESUMEN

Lengthy tuberculosis (TB) treatment is required to overcome the ability of a subpopulation of persistent Mycobacterium tuberculosis (Mtb) to remain in a non-replicating, antibiotic-tolerant state characterized by metabolic remodeling, including induction of the RelMtb-mediated stringent response. We developed a novel therapeutic DNA vaccine containing a fusion of the relMtb gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20. To augment mucosal immune responses, intranasal delivery was also evaluated. We found that intramuscular delivery of the MIP-3α/relMtb (fusion) vaccine or intranasal delivery of the relMtb (non-fusion) vaccine potentiate isoniazid activity more than intramuscular delivery of the DNA vaccine expressing relMtb alone in a chronic TB mouse model (absolute reduction of Mtb burden: 0.63 log10 and 0.5 log10 colony-forming units, respectively; P=0.0002 and P=0.0052), inducing pronounced Mtb-protective immune signatures. The combined approach involving intranasal delivery of the DNA MIP-3α/relMtb fusion vaccine demonstrated the greatest mycobactericidal activity together with isoniazid when compared to each approach alone (absolute reduction of Mtb burden: 1.13 log10, when compared to the intramuscular vaccine targeting relMtb alone; P<0.0001), as well as robust systemic and local Th1 and Th17 responses. This DNA vaccination strategy may be a promising adjunctive approach combined with standard therapy to shorten curative TB treatment, and also serves as proof of concept for treating other chronic bacterial infections.


Asunto(s)
Tuberculosis , Vacunas de ADN , Animales , Antibacterianos , Células Dendríticas , Isoniazida , Ratones
8.
Front Cardiovasc Med ; 8: 696517, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239907

RESUMEN

Background: Lipids play a central role in the pathogenesis of tuberculosis (TB). The effect of serum lipid levels on TB treatment (ATT) outcomes and their association with serum inflammatory markers have not yet been characterized. Methods: Our retrospective cohort study on drug-susceptible TB patients, at the National Taiwan University Hospital, assessed the association of baseline serum lipid levels such as low-density lipoprotein (LDL), high-density lipoprotein (HDL), total cholesterol (TC) and triglycerides (TG) with all-cause and infection-related mortality during first 9 months of ATT and baseline inflammatory markers namely C-reactive protein (CRP), total leukocyte count (WBC), and neutrophil-lymphocyte ratio (NL ratio). Results: Among 514 patients, 129 (26.6%) died due to any-cause and 72 (14.0%) died of infection. Multivariable Cox-regression showed a lower adjusted hazard ratio (aHR) of all-cause mortality in the 3rd tertiles of HDL (aHR 0.17, 95% CI 0.07-0.44) and TC (aHR 0.30, 95% CI 0.14-0.65), and lower infection-related mortality in the 3rd tertile of HDL (aHR 0.30, 95% CI 0.14-0.65) and TC (aHR 0.30, 95% CI 0.14-0.65) compared to the 1st tertile. The 3rd tertiles of LDL and TG showed no association in multivariable analysis. Similarly, 3rd tertiles of HDL and TC had lower levels of baseline inflammatory markers such as CRP, WBC, and NL ratio using linear regression analysis. Body mass index (BMI) did not show evidence of confounding or effect modification. Conclusions: Higher baseline serum cholesterol levels were associated with lower hazards of all-cause and infection-related mortality and lower levels of inflammatory markers in TB patients. BMI did not modify or confound this association.

9.
Sci Rep ; 11(1): 15283, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315941

RESUMEN

Tuberculosis (TB) and atherosclerotic cardiovascular disease (ASCVD) have a close epidemiological and pathogenetic overlap. Thus, it becomes essential to understand the relationship between ASCVD and TB outcomes. From our retrospective cohort on drug-susceptible TB patients at the National Taiwan University Hospital, we assessed the association of pre-existing ASCVD (coronary artery disease (CAD) and atherothrombotic stroke (ATS)) with 9-month all-cause and infection-related mortality and the extent of mediation by systemic inflammatory markers. We determined the effect of pre-existing ASCVD on 2-month sputum microbiological status. Among ASCVD patients, we assessed the association of statin use on mortality. Nine-month all-cause mortality was higher in CAD patients with prior acute myocardial infarction (CAD+AMI+) (adjusted HR 2.01, 95%CI 1.38-3.00) and ATS patients (aHR 2.79, 95%CI 1.92-4.07) and similarly, for infection-related mortality was higher in CAD+AMI+ (aHR 1.95, 95%CI 1.17-3.24) and ATS (aHR 2.04, 95%CI 1.19-3.46) after adjusting for confounding factors. Pre-existing CAD (AMI- or AMI+) or ATS did not change sputum culture conversion or sputum smear AFB positivity at 2 months. The CAD+AMI+ group had significantly higher levels of CRP at TB diagnosis in the multivariable linear regression analysis (Adjusted B(SE) 1.24(0.62)). CRP mediated 66% (P = 0.048) and 25% (P = 0.033) of the association all-cause mortality with CAD+AMI- and CAD+AMI+, respectively. In summary, patients with ASCVD have higher hazards of 9-month all-cause and infection-related mortality, with elevated serum inflammation mediating one to three-quarters of this association when adjusted for confounders. Statin use was associated with lower all-cause mortality among patients with ASCVD.


Asunto(s)
Aterosclerosis/complicaciones , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inflamación/complicaciones , Tuberculosis/complicaciones , Anciano , Aterosclerosis/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Resultado del Tratamiento
10.
bioRxiv ; 2021 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-33821269

RESUMEN

In the ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males compared with females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8-10 weeks of age) were inoculated intranasally with 10 5 TCID 50 of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developing more extensive pneumonia as noted on chest computed tomography, and recovering more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including IFNb and TNFa, were comparable between the sexes. However, during the recovery phase of infection, females mounted two-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole inactivated SARS-CoV-2 and mutant S-RBDs, as well as virus neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2 associated sex differences seen in the human population.

11.
mBio ; 12(4): e0097421, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34253053

RESUMEN

In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/inmunología , Pulmón/patología , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad , Animales , Formación de Anticuerpos/inmunología , Cricetinae , Modelos Animales de Enfermedad , Estradiol/farmacología , Femenino , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Interferón beta/análisis , Pulmón/diagnóstico por imagen , Pulmón/virología , Masculino , Factores Sexuales , Glicoproteína de la Espiga del Coronavirus/inmunología , Factor de Necrosis Tumoral alfa/análisis , Carga Viral
12.
Results Probl Cell Differ ; 69: 137-176, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33263871

RESUMEN

Bacteria participate in a wide diversity of symbiotic associations with eukaryotic hosts that require precise interactions for bacterial recognition and persistence. Most commonly, host-associated bacteria interfere with host gene expression to modulate the immune response to the infection. However, many of these bacteria also interfere with host cellular differentiation pathways to create a hospitable niche, resulting in the formation of novel cell types, tissues, and organs. In both of these situations, bacterial symbionts must interact with eukaryotic regulatory pathways. Here, we detail what is known about how bacterial symbionts, from pathogens to mutualists, control host cellular differentiation across the central dogma, from epigenetic chromatin modifications, to transcription and mRNA processing, to translation and protein modifications. We identify four main trends from this survey. First, mechanisms for controlling host gene expression appear to evolve from symbionts co-opting cross-talk between host signaling pathways. Second, symbiont regulatory capacity is constrained by the processes that drive reductive genome evolution in host-associated bacteria. Third, the regulatory mechanisms symbionts exhibit correlate with the cost/benefit nature of the association. And, fourth, symbiont mechanisms for interacting with host genetic regulatory elements are not bound by native bacterial capabilities. Using this knowledge, we explore how the ubiquitous intracellular Wolbachia symbiont of arthropods and nematodes may modulate host cellular differentiation to manipulate host reproduction. Our survey of the literature on how infection alters gene expression in Wolbachia and its hosts revealed that, despite their intermediate-sized genomes, different strains appear capable of a wide diversity of regulatory manipulations. Given this and Wolbachia's diversity of phenotypes and eukaryotic-like proteins, we expect that many symbiont-induced host differentiation mechanisms will be discovered in this system.


Asunto(s)
Artrópodos/microbiología , Diferenciación Celular , Nematodos/microbiología , Simbiosis , Wolbachia , Animales , Genoma Bacteriano , Reproducción , Wolbachia/genética
13.
Front Microbiol ; 11: 573983, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101247

RESUMEN

Mycobacterium avium complex (MAC) species are the most commonly isolated nontuberculous mycobacteria to cause pulmonary infections worldwide. The lengthy and complicated therapy required to cure lung disease due to MAC is at least in part due to the phenomenon of antibiotic tolerance. In this review, we will define antibiotic tolerance and contrast it with persistence and antibiotic resistance. We will discuss physiologically relevant stress conditions that induce altered metabolism and antibiotic tolerance in mycobacteria. Next, we will review general molecular mechanisms underlying bacterial antibiotic tolerance, particularly those described for MAC and related mycobacteria, including Mycobacterium tuberculosis, with a focus on genes containing significant sequence homology in MAC. An improved understanding of antibiotic tolerance mechanisms can lay the foundation for novel approaches to target antibiotic-tolerant mycobacteria, with the goal of shortening the duration of curative treatment and improving survival in patients with MAC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA