Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 20(7): 793-801, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31213715

RESUMEN

Unlike other cells in the body, immune cells have to be able to enter and adapt to life within diverse tissues. Immune cells develop within dedicated immune system organs, such as the bone marrow, thymus and lymphoid tissues, but also inhabit other tissues, wherein they not only provide defense against infection and malignancies but also contribute to homeostatic tissue function. Because different tissues have widely divergent metabolic rates and fuel requirements, this raises interesting questions about the adaptation of immune cells in specific tissues. When immune cells take up residence in different tissues, they develop a transcriptional signature that reflects adaptation to life and function within that tissue. Genes encoding metabolic-pathway proteins are strongly represented within these signatures, reflective of the importance of metabolic adaptation to tissue residence. In this Review, we discuss the available data on the metabolic adaptation of immune cells to life in different tissue sites, within the broader framework of how functional adaptation versus maladaptation in the niche can affect tissue homeostasis.


Asunto(s)
Adaptación Biológica , Metabolismo Energético , Sistema Inmunológico/citología , Sistema Inmunológico/fisiología , Especificidad de Órganos/inmunología , Animales , Biomarcadores , Homeostasis , Interacciones Huésped-Patógeno/inmunología , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Transducción de Señal
2.
Nat Immunol ; 20(4): 420-432, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30858618

RESUMEN

The adoption of Warburg metabolism is critical for the activation of macrophages in response to lipopolysaccharide. Macrophages stimulated with lipopolysaccharide increase their expression of nicotinamide phosphoribosyltransferase (NAMPT), a key enzyme in NAD+ salvage, and loss of NAMPT activity alters their inflammatory potential. However, the events that lead to the cells' becoming dependent on NAD+ salvage remain poorly defined. We found that depletion of NAD+ and increased expression of NAMPT occurred rapidly after inflammatory activation and coincided with DNA damage caused by reactive oxygen species (ROS). ROS produced by complex III of the mitochondrial electron-transport chain were required for macrophage activation. DNA damage was associated with activation of poly(ADP-ribose) polymerase, which led to consumption of NAD+. In this setting, increased NAMPT expression allowed the maintenance of NAD+ pools sufficient for glyceraldehyde-3-phosphate dehydrogenase activity and Warburg metabolism. Our findings provide an integrated explanation for the dependence of inflammatory macrophages on the NAD+ salvage pathway.


Asunto(s)
Daño del ADN , Macrófagos/metabolismo , NAD/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acrilamidas/farmacología , Animales , Células Cultivadas , Citocinas/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Células HEK293 , Humanos , Inflamación/metabolismo , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Piperidinas/farmacología
3.
Immunity ; 53(3): 641-657.e14, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888418

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) represents a spectrum of disease states ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic macrophages, specifically Kupffer cells (KCs), are suggested to play important roles in the pathogenesis of MAFLD through their activation, although the exact roles played by these cells remain unclear. Here, we demonstrated that KCs were reduced in MAFLD being replaced by macrophages originating from the bone marrow. Recruited macrophages existed in two subsets with distinct activation states, either closely resembling homeostatic KCs or lipid-associated macrophages (LAMs) from obese adipose tissue. Hepatic LAMs expressed Osteopontin, a biomarker for patients with NASH, linked with the development of fibrosis. Fitting with this, LAMs were found in regions of the liver with reduced numbers of KCs, characterized by increased Desmin expression. Together, our data highlight considerable heterogeneity within the macrophage pool and suggest a need for more specific macrophage targeting strategies in MAFLD.


Asunto(s)
Células de la Médula Ósea/citología , Activación de Macrófagos/inmunología , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Osteopontina/metabolismo , Animales , Biomarcadores/metabolismo , Células Cultivadas , Desmina/metabolismo , Femenino , Macrófagos del Hígado/citología , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteoma/metabolismo , Transcriptoma/genética
4.
Proc Natl Acad Sci U S A ; 121(28): e2318691121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968121

RESUMEN

Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Resistencia a la Insulina , Obesidad , Animales , Masculino , Femenino , Ratones , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/metabolismo , Obesidad/microbiología , Obesidad/etiología , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Ácidos Esteáricos/metabolismo , Ácido Palmítico/metabolismo , Heces/microbiología , Ratones Obesos
5.
Proc Natl Acad Sci U S A ; 120(4): e2214484120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652484

RESUMEN

The microbiota performs multiple functions vital to host fitness, including defense against pathogens and adaptation to dietary changes. Yet, how environmental challenges shape microbiota resilience to nutrient fluctuation remains largely unexplored. Here, we show that transient gut infection can optimize host metabolism toward the usage of carbohydrates. Following acute infection and clearance of the pathogen, mice gained more weight as a result of white adipose tissue expansion. Concomitantly, previously infected mice exhibited enhanced carbohydrate (glucose) disposal and insulin sensitivity. This metabolic remodeling depended on alterations to the gut microbiota, with infection-elicited Betaproteobacteria being sufficient to enhance host carbohydrate metabolism. Further, infection-induced metabolic alteration protected mice against stunting in the context of limited nutrient availability. Together, these results propose that alterations to the microbiota imposed by acute infection may enhance host fitness and survival in the face of nutrient restriction, a phenomenon that may be adaptive in settings where both infection burden and food precarity are prevalent.


Asunto(s)
Resistencia a la Insulina , Microbiota , Animales , Ratones , Adaptación al Huésped , Obesidad/metabolismo , Nutrientes
6.
J Immunol ; 207(2): 626-639, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34261666

RESUMEN

Sepsis is a complex infectious syndrome in which neutrophil participation is crucial for patient survival. Neutrophils quickly sense and eliminate the pathogen by using different effector mechanisms controlled by metabolic processes. The mammalian target of rapamycin (mTOR) pathway is an important route for metabolic regulation, and its role in neutrophil metabolism has not been fully understood yet, especially the importance of mTOR complex 2 (mTORC2) in the neutrophil effector functions. In this study, we observed that the loss of Rictor (mTORC2 scaffold protein) in primary mouse-derived neutrophils affects their chemotaxis by fMLF and their microbial killing capacity, but not the phagocytic capacity. We found that the microbicidal capacity was impaired in Rictor-deleted neutrophils because of an improper fusion of granules, reducing the hypochlorous acid production. The loss of Rictor also led to metabolic alterations in isolated neutrophils, increasing aerobic glycolysis. Finally, myeloid-Rictor-deleted mice (LysMRic Δ/Δ) also showed an impairment of the microbicidal capacity, increasing the bacterial burden in the Escherichia coli sepsis model. Overall, our results highlight the importance of proper mTORC2 activation for neutrophil effector functions and metabolism during sepsis.


Asunto(s)
Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Neutrófilos/metabolismo , Sepsis/metabolismo , Sepsis/microbiología , Animales , Quimiotaxis/fisiología , Escherichia coli/metabolismo , Femenino , Glucólisis/fisiología , Humanos , Ácido Hipocloroso/metabolismo , Ratones , Ratones Endogámicos C57BL , Fagocitosis/fisiología , Transducción de Señal/fisiología
7.
Proc Natl Acad Sci U S A ; 117(49): 31309-31318, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33214151

RESUMEN

Adipose tissue (AT) inflammation contributes to systemic insulin resistance. In obesity and type 2 diabetes (T2D), retinol binding protein 4 (RBP4), the major retinol carrier in serum, is elevated in AT and has proinflammatory effects which are mediated partially through Toll-like receptor 4 (TLR4). We now show that RBP4 primes the NLRP3 inflammasome for interleukin-1ß (IL1ß) release, in a glucose-dependent manner, through the TLR4/MD2 receptor complex and TLR2. This impairs insulin signaling in adipocytes. IL1ß is elevated in perigonadal white AT (PGWAT) of chow-fed RBP4-overexpressing mice and in serum and PGWAT of high-fat diet-fed RBP4-overexpressing mice vs. wild-type mice. Holo- or apo-RBP4 injection in wild-type mice causes insulin resistance and elevates PGWAT inflammatory markers, including IL1ß. TLR4 inhibition in RBP4-overexpressing mice reduces PGWAT inflammation, including IL1ß levels and improves insulin sensitivity. Thus, the proinflammatory effects of RBP4 require NLRP3-inflammasome priming. These studies may provide approaches to reduce AT inflammation and insulin resistance in obesity and diabetes.


Asunto(s)
Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Tejido Adiposo Blanco/patología , Animales , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Humanos , Inflamación/patología , Resistencia a la Insulina , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Factor de Necrosis Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38003516

RESUMEN

Interleukin-33 (IL-33), a member of the interleukin-1(IL-1) family of cytokines, remains poorly understood in the context of human breast cancer and its impact on treatment outcomes. This study aimed to elucidate IL-33 expression patterns within tumor samples from a cohort of Brazilian female breast cancer patients undergoing neoadjuvant chemotherapy while exploring its correlation with clinicopathological markers. In total, 68 samples were meticulously evaluated, with IL-33 expression quantified through a quantitative polymerase chain reaction. The findings revealed a substantial upregulation of IL-33 expression in breast cancer patient samples, specifically within the Triple-negative and Luminal A and B subtypes, when compared to controls (healthy breast tissues). Notably, the Luminal B subtype displayed a marked elevation in IL-33 expression relative to the Luminal A subtype (p < 0.05). Moreover, a progressive surge in IL-33 expression was discerned among Luminal subtype patients with TNM 4 staging criteria, further underscoring its significance (p < 0.005). Furthermore, chemotherapy-naïve patients of Luminal A and B subtypes exhibited heightened IL-33 expression (p < 0.05). Collectively, our findings propose that chemotherapy could potentially mitigate tumor aggressiveness by suppressing IL-33 expression in breast cancer, thus warranting consideration as a prognostic marker for gauging chemotherapy response and predicting disease progression in Luminal subtype patients. This study not only sheds light on the intricate roles of IL-33 in breast cancer but also offers valuable insights for future IL-33-related research endeavors within this context.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Interleucina-33/genética , Interleucina-33/uso terapéutico , Terapia Neoadyuvante , Brasil , Resultado del Tratamiento , Biomarcadores de Tumor , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Receptor ErbB-2/metabolismo
9.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003706

RESUMEN

This systematic review aims to evaluate the influence of environmental enrichment (EE) on oncological factors in experimental studies involving various types of cancer models. A comprehensive search was conducted in three databases: PubMed (161 articles), Embase (335 articles), and Scopus (274 articles). Eligibility criteria were applied based on the PICOS strategy to minimize bias. Two independent researchers performed the searches, with a third participant resolving any discrepancies. The selected articles were analyzed, and data regarding sample characteristics and EE protocols were extracted. The outcomes focused solely on cancer and tumor-related parameters, including cancer type, description of the cancer model, angiogenesis, tumor occurrence, volume, weight, mice with tumors, and tumor inhibition rate. A total of 770 articles were identified across the three databases, with 12 studies meeting the inclusion criteria for this systematic review. The findings demonstrated that different EE protocols were effective in significantly reducing various aspects of tumor growth and development, such as angiogenesis, volume, weight, and the number of mice with tumors. Furthermore, EE enhanced the rate of tumor inhibition in mouse cancer models. This systematic review qualitatively demonstrates the impacts of EE protocols on multiple parameters associated with tumor growth and development, including angiogenesis, occurrence, volume, weight, and tumor incidence. Moreover, EE demonstrated the potential to increase the rate of tumor inhibition. These findings underscore the importance of EE as a valuable tool in the management of cancer.


Asunto(s)
Neoplasias , Humanos , Ratones , Animales , Modelos Animales de Enfermedad , Oncología Médica
10.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047078

RESUMEN

Although the exact mechanism of the pathogenesis of coronavirus SARS-CoV-2 (COVID-19) is not fully understood, oxidative stress and the release of pro-inflammatory cytokines have been highlighted as playing a vital role in the pathogenesis of the disease. In this sense, alternative treatments are needed to reduce the level of inflammation caused by COVID-19. Therefore, this study aimed to investigate the potential effect of red photobiomodulation (PBM) as an attractive therapy to downregulate the cytokine storm caused by COVID-19 in a zebrafish model. RT-qPCR analyses and protein-protein interaction prediction among SARS-CoV-2 and Danio rerio proteins showed that recombinant Spike protein (rSpike) was responsible for generating systemic inflammatory processes with significantly increased levels of pro-inflammatory (il1b, il6, tnfa, and nfkbiab), oxidative stress (romo1) and energy metabolism (slc2a1a and coa1) mRNA markers, with a pattern similar to those observed in COVID-19 cases in humans. On the other hand, PBM treatment was able to decrease the mRNA levels of these pro-inflammatory and oxidative stress markers compared with rSpike in various tissues, promoting an anti-inflammatory response. Conversely, PBM promotes cellular and tissue repair of injured tissues and significantly increases the survival rate of rSpike-inoculated individuals. Additionally, metabolomics analysis showed that the most-impacted metabolic pathways between PBM and the rSpike treated groups were related to steroid metabolism, immune system, and lipid metabolism. Together, our findings suggest that the inflammatory process is an incisive feature of COVID-19 and red PBM can be used as a novel therapeutic agent for COVID-19 by regulating the inflammatory response. Nevertheless, the need for more clinical trials remains, and there is a significant gap to overcome before clinical trials can commence.


Asunto(s)
COVID-19 , Animales , Humanos , Pez Cebra/metabolismo , SARS-CoV-2/metabolismo , Síndrome de Liberación de Citoquinas , Citocinas/metabolismo , ARN Mensajero , Proteínas de la Membrana , Proteínas Mitocondriales
11.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36233282

RESUMEN

Environmental Enrichment (EE) is based on the promotion of socio-environmental stimuli, which mimic favorable environmental conditions for the practice of physical activity and health. The objective of the present systematic review was to evaluate the influence of EE on pro-and anti-inflammatory immune parameters, but also in cell activation related to the innate and acquired immune responses in the brain and peripheral tissues in rodents. Three databases [PubMed (2209 articles), Scopus (1154 articles), and Science Direct (1040 articles)] were researched. After applying the eligibility criteria, articles were selected for peer review, independently, as they were identified by September 2021. The protocol for this systematic review was registered in the PROSPERO. Of the 4417 articles found, 16 were selected for this systematic review. In the brain, EE promoted a reduction in proinflammatory cytokines and chemokines. In the blood, EE promoted a higher percentage of leukocytes, an increase in CD19+ B lymphocytes, and the proliferation of Natura Killer (NK cells). In the bone marrow, there was an increase in the number of CD27- and CD11b+ mature NK cells and a reduction in CD27- and CD11b+ immature Natural Killer cells. In conclusion, EE can be an immune modulation approach and plays a key role in the prevention of numerous chronic diseases, including cancer, that have a pro-inflammatory response and immunosuppressive condition as part of their pathophysiology.


Asunto(s)
Citocinas , Roedores , Animales , Médula Ósea , Células Asesinas Naturales
12.
Br J Cancer ; 123(4): 534-541, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32499569

RESUMEN

BACKGROUND: Host-microbiota interactions shape T-cell differentiation and promote tumour immunity. Although IL-9-producing T cells have been described as potent antitumour effectors, their role in microbiota-mediated tumour control remains unclear. METHODS: We analysed the impact of the intestinal microbiota on the differentiation of colonic lamina propria IL-9-producing T cells in germ-free and dysbiotic mice. Systemic effects of the intestinal microbiota on IL-9-producing T cells and the antitumour role of IL-9 were analysed in a model of melanoma-challenged dysbiotic mice. RESULTS: We show that germ-free mice have lower frequency of colonic lamina propria IL-9-producing T cells when compared with conventional mice, and that intestinal microbiota reconstitution restores cell frequencies. Long-term antibiotic treatment promotes host dysbiosis, diminishes intestinal IL-4 and TGF-ß gene expression, decreases the frequency of colonic lamina propria IL-9-producing T cells, increases the susceptibility to tumour development and reduces the frequency of IL-9-producing T cells in the tumour microenvironment. Faecal transplant restores intestinal microbiota diversity, and the frequency of IL-9-producing T cells in the lungs of dysbiotic animals, restraining tumour burden. Finally, recombinant IL-9 injection enhances tumour control in dysbiotic mice. CONCLUSIONS: Host-microbiota interactions are required for adequate differentiation and antitumour function of IL-9-producing T cells.


Asunto(s)
Antibacterianos/efectos adversos , Disbiosis/inmunología , Vida Libre de Gérmenes , Interleucina-9/metabolismo , Melanoma/microbiología , Linfocitos T/inmunología , Animales , Diferenciación Celular , Línea Celular Tumoral , Disbiosis/inducido químicamente , Disbiosis/terapia , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Interleucina-4/metabolismo , Masculino , Melanoma/inmunología , Ratones , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/inmunología , Trasplante de Neoplasias , Linfocitos T/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral
13.
Exerc Immunol Rev ; 26: 10-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32139355

RESUMEN

Moderate aerobic training may be therapeutic for chronic low-grade inflammatory diseases due to the associated anti-inflammatory response that is mediated by immune cells. The peroxisome proliferator-activated receptor gamma (PPARγ) regulates the M1 (pro-inflammatory) and M2 (anti-inflammatory) polarization, as well as the immunometabolic response of macrophages. Against this background, the present study seeks to clarify whether the conditional deletion of PPARγ in macrophages would have any effect on the anti-inflammatory role of moderate aerobic training. To test this hypothesis, two mice strains were used: PPARγ LyzCre+/+ (KO) and littermates control animals (WT). Each genotype was divided into 1) sedentary high-fat diet (HF) and 2) high-fat diet and moderate aerobic training (HFT) (n = 5-8 per group). The experimental protocol lasted for 12 weeks, comprising 4 weeks of HF diet only and 8 weeks of HF diet and aerobic training (5 times/week, 50-60 minutes/day at 60% of maximum speed). Metabolic analyses were carried out on the serum glucose homeostase, adipose tissue morphology and cytokine content, and macrophage cytokine production.Immunophenotyping and gene expression were also performed. KO male mice were more prone to hypertrophy in the subcutaneous adipose tissue, though only the IL-1ß (p = 0.0049) was higher compared to the values observed in WT animals. Peritoneal macrophages from KO animals exhibited a marked inflammatory environment with an increase in TNF-α (p = 0.0008), IL- 1ß (p = 0.0017), and IL-6 (p < 0.0001) after lipopolysaccharide stimulation. The moderate aerobic training protected both genotypes from weight gain and reduced the caloric intake in the KO animals. Despite the attenuation of the M2 marker CD206 (p < 0.001) in the absence of PPAR-γ, the aerobic training modulated cytokine production in LPS stimulated peritoneal macrophages from both genotypes, reducing proinflammatory cytokines such as TNF-α (p = 0.0002) and IL-6 (p < 0.0001). Overall, our findings demonstrate the essential role of PPARγ in macrophage immunophenotypes. However, the deletion of PPARγ did not inhibit the exercise-mediated anti-inflammatory effect, underscoring the important role of exercise in modulating inflammation.


Asunto(s)
Inflamación/inmunología , Macrófagos Peritoneales/inmunología , PPAR gamma/inmunología , Condicionamiento Físico Animal , Animales , Dieta Alta en Grasa , Inmunofenotipificación , Interleucina-1beta/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Factor de Necrosis Tumoral alfa/inmunología
14.
J Cell Physiol ; 234(4): 5241-5251, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30238979

RESUMEN

BACKGROUND: Exercise is a powerful tool for prevention and treatment of many conditions related to the cardiovascular system and also chronic low-grade inflammation. Peroxisome proliferator-activated receptors γ (PPARγ) exerts an import role on the regulation of metabolic profile and subsequent inflammatory response, especially in macrophages. PURPOSE: To investigate the effects of 8-week moderate-exercise training on metabolic and inflammatory parameters in mice with PPARγ deficiency in myeloid cells. METHODS: Twelve-week old mice bearing PPARγ deletion exclusively in myeloid cells (PPARγlox/lox Lys Cre -/+ , knockout [KO]) and littermate controls (PPARγlox/lox Lys Cre -/- , wild type [WT]) were submitted to 8-week exercise training (treadmill running at moderate intensity, 5 days/week). Animals were evaluated for food intake, glucose homeostasis, serum metabolites, adipose tissue and peritoneal macrophage inflammation, and basal and stimulated cytokine secretion. RESULTS: Exercise protocol did not improve glucose metabolism or adiponectin concentrations in serum of KO mice. Moreover, the absence of PPARγ in macrophages exacerbated the proinflammatory profile in sedentary mice. Peritoneal cultured cells had higher tumor necrosis factor-α (TNF-α) secretion in nonstimulated and lipopolysaccharide (LPS)-stimulated conditions and higher Toll-4 receptor (TLR4) gene expression under LPS stimulus. Trained mice showed reduced TNF-α content in adipose tissue independently of the genotype. M2 polarization ability was impaired in KO peritoneal macrophages after exercise training, while adipose tissue-associated macrophages did not present any effect by PPARγ ablation. CONCLUSION: Overall, PPARγ seems necessary to maintain macrophages appropriate response to inflammatory stimulus and macrophage polarization, affecting also whole body lipid metabolism and adiponectin profile. Exercise training showed as an efficient mechanism to restore the immune response impaired by PPARγ deletion in macrophages.


Asunto(s)
Plasticidad de la Célula , Metabolismo Energético , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/metabolismo , PPAR gamma/deficiencia , Condicionamiento Físico Animal/métodos , Adiponectina/sangre , Tejido Adiposo/metabolismo , Animales , Células Cultivadas , Eliminación de Gen , Lípidos/sangre , Macrófagos Peritoneales/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/genética , Fenotipo , Resistencia Física , Factores de Tiempo
15.
Clin Sci (Lond) ; 132(16): 1725-1739, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-29500224

RESUMEN

Acute kidney injury (AKI) is considered an inflammatory disease in which toll-like receptors (TLRs) signaling pathways play an important role. The activation of TLRs results in production of several inflammatory cytokines leading to further renal damage. In contrast, TLRs are key players on autophagy induction, which is associated with a protective function on cisplatin-induced AKI. Hence, the present study aimed to evaluate the specific participation of TLR2 and TLR4 molecules on the development of cisplatin-induced AKI. Complementarily, we also investigated the link between TLRs and heme oxygenase-1 (HO-1), a promisor cytoprotective molecule. First, we observed that only the absence of TLR2 but not TLR4 in mice exacerbated the renal dysfunction, tissue injury and mortality rate, even under an immunologically privileged microenvironment. Second, we demonstrated that TLR2 knockout (KO) mice presented lower expression of autophagy-associated markers when compared with TLR4 KO animals. Similar parameter was confirmed in vitro, using tubular epithelial cells derived from both KO mice. To test the cross-talking between HO-1 and TLRs, hemin (an HO-1 internal inducer) was administrated in cisplatin-treated TLR2 and TLR4 KO mice and it was detected an improvement in the global renal tissue parameters. However, this protection was less evident at TLR2 KO mice. In summary, we documented that TLR2 plays a protective role in cisplatin-induced AKI progression, in part, by a mechanism associated with autophagy up-regulation, considering that its interplay with HO-1 can promote renal tissue recover.


Asunto(s)
Lesión Renal Aguda/genética , Autofagia/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Lesión Renal Aguda/metabolismo , Animales , Células Cultivadas , Cisplatino , Citocinas/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Riñón/metabolismo , Riñón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
16.
Inflammopharmacology ; 26(1): 251-260, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29063489

RESUMEN

Inflammatory bowel diseases (IBDs) affect millions of people worldwide and their frequencies in developed countries have increased since the twentieth century. In this context, there is an intensive search for therapies that modulate inflammation and provide tissue regeneration in IBDs. Recently, the immunomodulatory activity of adipose tissue-derived mesenchymal stromal cells (ADMSCs) has been demonstrated to play an important role on several immune cells in different conditions of inflammatory and autoimmune diseases. In this study, we explored the immunomodulatory potential of ADMSC in a classical model of DSS-induced colitis. First, we found that treatment of mice with ADMSC ameliorated the severity of DSS-induced colitis, reducing colitis pathological score and preventing colon shortening. Moreover, a prominent reduction of pro-inflammatory cytokines levels (i.e., IFN-γ, TNF-α, IL-6 and MCP-1) was observed in the colon of animals treated with ADMSC. We also observed a significant reduction in the frequencies of macrophages (F4/80+CD11b+) and dendritic cells (CD11c+CD103+) in the intestinal lamina propria of ADMSC-treated mice. Finally, we detected the up-regulation of immunoregulatory-associated molecules in intestine of mice treated with ADMSCs (i.e., elevated arginase-1 and IL-10). Thus, this present study demonstrated that ADMSC modulates the overall gut inflammation (cell activation and recruitment) in experimental colitis, providing support to the further development of new strategies in the treatment of intestinal diseases.


Asunto(s)
Colitis/metabolismo , Colitis/patología , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Inflamación/patología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Colon/metabolismo , Colon/patología , Citocinas/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patología , Modelos Animales de Enfermedad , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL
17.
J Lipid Res ; 58(9): 1797-1807, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28679588

RESUMEN

Mechanistic target of rapamycin complex (mTORC)1 activity is increased in adipose tissue of obese insulin-resistant mice, but its role in the regulation of tissue inflammation is unknown. Herein, we investigated the effects of adipocyte mTORC1 deficiency on adipose tissue inflammation and glucose homeostasis. For this, mice with adipocyte raptor deletion and controls fed a chow or a high-fat diet were evaluated for body mass, adiposity, glucose homeostasis, and adipose tissue inflammation. Despite reducing adiposity, adipocyte mTORC1 deficiency promoted hepatic steatosis, insulin resistance, and adipose tissue inflammation (increased infiltration of macrophages, neutrophils, and B lymphocytes; crown-like structure density; TNF-α, interleukin (IL)-6, and monocyte chemoattractant protein 1 expression; IL-1ß protein content; lipid peroxidation; and de novo ceramide synthesis). The anti-oxidant, N-acetylcysteine, partially attenuated, whereas treatment with de novo ceramide synthesis inhibitor, myriocin, completely blocked adipose tissue inflammation and nucleotide oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3)-inflammasome activation, but not hepatic steatosis and insulin resistance induced by adipocyte raptor deletion. Rosiglitazone treatment, however, completely abrogated insulin resistance induced by adipocyte raptor deletion. In conclusion, adipocyte mTORC1 deficiency induces adipose tissue inflammation and NLRP3-inflammasome activation by promoting oxidative stress and de novo ceramide synthesis. Such adipose tissue inflammation, however, is not an underlying cause of the insulin resistance displayed by these mice.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/patología , Ceramidas/biosíntesis , Inflamasomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Adipocitos/efectos de los fármacos , Adipocitos/patología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/deficiencia , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos
18.
J Biol Chem ; 291(42): 22207-22217, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27573241

RESUMEN

We recently discovered a structurally novel class of endogenous lipids, branched palmitic acid esters of hydroxy stearic acids (PAHSAs), with beneficial metabolic and anti-inflammatory effects. We tested whether PAHSAs protect against colitis, which is a chronic inflammatory disease driven predominantly by defects in the innate mucosal barrier and adaptive immune system. There is an unmet clinical need for safe and well tolerated oral therapeutics with direct anti-inflammatory effects. Wild-type mice were pretreated orally with vehicle or 5-PAHSA (10 mg/kg) and 9-PAHSA (5 mg/kg) once daily for 3 days, followed by 10 days of either 0% or 2% dextran sulfate sodium water with continued vehicle or PAHSA treatment. The colon was collected for histopathology, gene expression, and flow cytometry. Intestinal crypt fractions were prepared for ex vivo bactericidal assays. Bone marrow-derived dendritic cells pretreated with vehicle or PAHSA and splenic CD4+ T cells from syngeneic mice were co-cultured to assess antigen presentation and T cell activation in response to LPS. PAHSA treatment prevented weight loss, improved colitis scores (stool consistency, hematochezia, and mouse appearance), and augmented intestinal crypt Paneth cell bactericidal potency via a mechanism that may involve GPR120. In vitro, PAHSAs attenuated dendritic cell activation and subsequent T cell proliferation and Th1 polarization. The anti-inflammatory effects of PAHSAs in vivo resulted in reduced colonic T cell activation and pro-inflammatory cytokine and chemokine expression. These anti-inflammatory effects appear to be partially GPR120-dependent. We conclude that PAHSA treatment regulates innate and adaptive immune responses to prevent mucosal damage and protect against colitis. Thus, PAHSAs may be a novel treatment for colitis and related inflammation-driven diseases.


Asunto(s)
Inmunidad Adaptativa/inmunología , Colitis/tratamiento farmacológico , Ácidos Grasos/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunidad Mucosa/efectos de los fármacos , Células de Paneth/inmunología , Células TH1/inmunología , Animales , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Sulfato de Dextran/efectos adversos , Sulfato de Dextran/farmacología , Masculino , Ratones , Células de Paneth/patología , Receptores Acoplados a Proteínas G/inmunología , Células TH1/patología
19.
Mediators Inflamm ; 2016: 1784014, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27293313

RESUMEN

Sepsis is a systemic inflammatory response to infection eliciting high mortality rate which is a serious health problem. Despite numerous studies seeking for therapeutic alternatives, the mechanisms involved in this disease remain elusive. In this study we evaluated the influence of cholesteryl ester transfer protein (CETP), a glycoprotein that promotes the transfer of lipids between lipoproteins, on the inflammatory response in mice. Human CETP transgenic mice were compared to control mice (wild type, WT) after polymicrobial sepsis induced by cecal ligation and puncture (CLP), aiming at investigating their survival rate and inflammatory profiles. Macrophages from the peritoneal cavity were stimulated with LPS in the presence or absence of recombinant CETP for phenotypic and functional studies. In comparison to WT mice, CETP mice showed higher survival rate, lower IL-6 plasma concentration, and decreased liver toll-like receptor 4 (TLR4) and acyloxyacyl hydrolase (AOAH) protein. Moreover, macrophages from WT mice to which recombinant human CETP was added decreased LPS uptake, TLR4 expression, NF-κB activation and IL-6 secretion. This raises the possibility for new therapeutic tools in sepsis while suggesting that lowering CETP by pharmacological inhibitors should be inconvenient in the context of sepsis and infectious diseases.


Asunto(s)
Proteínas de Transferencia de Ésteres de Colesterol/uso terapéutico , Inflamación/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Receptor Toll-Like 4/metabolismo , Animales , Hidrolasas de Éster Carboxílico/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , FN-kappa B/metabolismo , Sepsis/metabolismo
20.
J Am Soc Nephrol ; 26(8): 1877-88, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25589612

RESUMEN

Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.


Asunto(s)
Lesión Renal Aguda/prevención & control , Ácidos Grasos Volátiles/uso terapéutico , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/metabolismo , Animales , Bifidobacterium , Línea Celular , Células Dendríticas/metabolismo , Evaluación Preclínica de Medicamentos , Inflamación/tratamiento farmacológico , Masculino , Ratones Endogámicos C57BL , Estrés Oxidativo , Probióticos/uso terapéutico , Daño por Reperfusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA