Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 21(12): e3002040, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38051727

RESUMEN

The acquisition of multidrug resistance (MDR) determinants jeopardizes treatment of bacterial infections with antibiotics. The tripartite efflux pump AcrAB-NodT confers adaptive MDR in the polarized α-proteobacterium Caulobacter crescentus via transcriptional induction by first-generation quinolone antibiotics. We discovered that overexpression of AcrAB-NodT by mutation or exogenous inducers confers resistance to cephalosporin and penicillin (ß-lactam) antibiotics. Combining 2-step mutagenesis-sequencing (Mut-Seq) and cephalosporin-resistant point mutants, we dissected how TipR uses a common operator of the divergent tipR and acrAB-nodT promoter for adaptive and/or potentiated AcrAB-NodT-directed efflux. Chemical screening identified diverse compounds that interfere with DNA binding by TipR or induce its dependent proteolytic turnover. We found that long-term induction of AcrAB-NodT deforms the envelope and that homeostatic control by TipR includes co-induction of the DnaJ-like co-chaperone DjlA, boosting pump assembly and/or capacity in anticipation of envelope stress. Thus, the adaptive MDR regulatory circuitry reconciles drug efflux with co-chaperone function for trans-envelope assemblies and maintenance.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Transporte Biológico , Cefalosporinas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Resistencia betalactámica , Proteínas de Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana
2.
Biochem Cell Biol ; 102(3): 226-237, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377487

RESUMEN

We here describe the structure-based design of small molecule inhibitors of the type IV secretion system of Helicobacter pylori. The secretion system is encoded by the cag pathogenicity island, and we chose Cagα, a hexameric ATPase and member of the family of VirB11-like proteins, as target for inhibitor design. We first solved the crystal structure of Cagα in a complex with the previously identified small molecule inhibitor 1G2. The molecule binds at the interface between two Cagα subunits and mutagenesis of the binding site identified Cagα residues F39 and R73 as critical for 1G2 binding. Based on the inhibitor binding site we synthesized 98 small molecule derivates of 1G2 to improve binding of the inhibitor. We used the production of interleukin-8 of gastric cancer cells during H. pylori infection to screen the potency of inhibitors and we identified five molecules (1G2_1313, 1G2_1338, 1G2_2886, 1G2_2889, and 1G2_2902) that have similar or higher potency than 1G2. Differential scanning fluorimetry suggested that these five molecules bind Cagα, and enzyme assays demonstrated that some are more potent ATPase inhibitors than 1G2. Finally, scanning electron microscopy revealed that 1G2 and its derivatives inhibit the assembly of T4SS-determined extracellular pili suggesting a mechanism for their anti-virulence effect.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Bacterianas , Helicobacter pylori , Helicobacter pylori/enzimología , Humanos , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/antagonistas & inhibidores , Diseño de Fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Modelos Moleculares , Sitios de Unión , Relación Estructura-Actividad , Línea Celular Tumoral , Interleucina-8/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(23): 5950-5955, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784815

RESUMEN

Type IV secretion systems (T4SSs) are multiprotein assemblies that translocate macromolecules across the cell envelope of bacteria. X-ray crystallographic and electron microscopy (EM) analyses have increasingly provided structural information on individual T4SS components and on the entire complex. As of now, relatively little information has been available on the exact localization of the inner membrane-bound T4SS components, notably the mostly periplasmic VirB8 protein and the very hydrophobic VirB6 protein. We show here that the membrane-bound, full-length version of the VirB8 homolog TraE from the plasmid pKM101 secretion system forms a high-molecular-mass complex that is distinct from the previously characterized periplasmic portion of the protein that forms dimers. Full-length TraE was extracted from the membranes with detergents, and analysis by size-exclusion chromatography, cross-linking, and size exclusion chromatography (SEC) multiangle light scattering (MALS) shows that it forms a high-molecular-mass complex. EM and small-angle X-ray scattering (SAXS) analysis demonstrate that full-length TraE forms a hexameric complex with a central pore. We also overproduced and purified the VirB6 homolog TraD and show by cross-linking, SEC, and EM that it binds to TraE. Our results suggest that TraE and TraD interact at the substrate translocation pore of the secretion system.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Conjugación Genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Plásmidos/genética , Multimerización de Proteína , Sistemas de Secreción Tipo IV
4.
Biochemistry ; 56(17): 2261-2270, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28414460

RESUMEN

In mammalian cells, the incorporation of the 21st amino acid, selenocysteine, into proteins is guided by the Sec machinery. The function of this protein complex requires several protein-protein and protein-RNA interactions, leading to the incorporation of selenocysteine at UGA codons. It is guided by stem-loop structures localized in the 3' untranslated regions of the selenoprotein-encoding genes. Here, we conducted a global analysis of interactions between the Sec biosynthesis and incorporation components using a bioluminescence resonance energy transfer assay in mammalian cells that showed that selenocysteine synthase (SEPSECS), SECp43, and selenophosphate synthetases SEPHS1 and SEPHS2 form oligomers in eukaryotic cells. We also showed that SEPHS2 interacts with SEPSECS and SEPHS1; these interactions were confirmed by co-immunoprecipitation. To further analyze the interactions of SECp43, the protein was expressed in Escherichia coli, and small-angle X-ray scattering analysis revealed that it is a globular protein comprising two RNA-binding domains. Using phage display, we identified potential interaction sites and highlighted two residues (K166 and P167) required for its dimerization. The SECp43 structural model presented here constitutes the basis of future exploration of the protein-protein interactions among early components of the selenocysteine biosynthesis and incorporation pathway.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Modelos Moleculares , Fosfotransferasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transferasas/metabolismo , Sustitución de Aminoácidos , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/genética , Transferencia de Energía por Resonancia de Bioluminiscencia , Técnicas de Visualización de Superficie Celular , Reactivos de Enlaces Cruzados/farmacología , Dimerización , Células HEK293 , Humanos , Inmunoprecipitación , Mutación , Proteínas Nucleares , Fosfotransferasas/química , Fosfotransferasas/genética , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Dispersión del Ángulo Pequeño , Succinimidas/farmacología , Transferasas/química , Transferasas/genética , Difracción de Rayos X
5.
J Biol Chem ; 291(45): 23817-23829, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27634044

RESUMEN

Gram-negative bacteria use type IV secretion systems (T4SSs) for a variety of macromolecular transport processes that include the exchange of genetic material. The pKM101 plasmid encodes a T4SS similar to the well-studied model systems from Agrobacterium tumefaciens and Brucella suis Here, we studied the structure and function of TraE, a homolog of VirB8 that is an essential component of all T4SSs. Analysis by X-ray crystallography revealed a structure that is similar to other VirB8 homologs but displayed an altered dimerization interface. The dimerization interface observed in the X-ray structure was corroborated using the bacterial two-hybrid assay, biochemical characterization of the purified protein, and in vivo complementation, demonstrating that there are different modes of dimerization among VirB8 homologs. Analysis of interactions using the bacterial two-hybrid and cross-linking assays showed that TraE and its homologs from Agrobacterium, Brucella, and Helicobacter pylori form heterodimers. They also interact with heterologous VirB10 proteins, indicating a significant degree of plasticity in the protein-protein interactions of VirB8-like proteins. To further assess common features of VirB8-like proteins, we tested a series of small molecules derived from inhibitors of Brucella VirB8 dimerization. These molecules bound to TraE in vitro, docking predicted that they bind to a structurally conserved surface groove of the protein, and some of them inhibited pKM101 plasmid transfer. VirB8-like proteins thus share functionally important sites, and these can be exploited for the design of specific inhibitors of T4SS function.


Asunto(s)
Proteínas Bacterianas/química , Bacterias Gramnegativas/química , Plásmidos/química , Sistemas de Secreción Tipo IV/química , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Brucella suis/química , Brucella suis/metabolismo , Cristalografía por Rayos X , Bacterias Gramnegativas/metabolismo , Helicobacter pylori/química , Helicobacter pylori/metabolismo , Modelos Moleculares , Plásmidos/antagonistas & inhibidores , Plásmidos/metabolismo , Conformación Proteica , Mapas de Interacción de Proteínas , Multimerización de Proteína , Bibliotecas de Moléculas Pequeñas/farmacología , Sistemas de Secreción Tipo IV/antagonistas & inhibidores , Sistemas de Secreción Tipo IV/metabolismo
6.
Nat Microbiol ; 8(4): 711-726, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36894633

RESUMEN

Contractile injection systems (CIS) are bacteriophage tail-like structures that mediate bacterial cell-cell interactions. While CIS are highly abundant across diverse bacterial phyla, representative gene clusters in Gram-positive organisms remain poorly studied. Here we characterize a CIS in the Gram-positive multicellular model organism Streptomyces coelicolor and show that, in contrast to most other CIS, S. coelicolor CIS (CISSc) mediate cell death in response to stress and impact cellular development. CISSc are expressed in the cytoplasm of vegetative hyphae and are not released into the medium. Our cryo-electron microscopy structure enabled the engineering of non-contractile and fluorescently tagged CISSc assemblies. Cryo-electron tomography showed that CISSc contraction is linked to reduced cellular integrity. Fluorescence light microscopy furthermore revealed that functional CISSc mediate cell death upon encountering different types of stress. The absence of functional CISSc had an impact on hyphal differentiation and secondary metabolite production. Finally, we identified three putative effector proteins, which when absent, phenocopied other CISSc mutants. Our results provide new functional insights into CIS in Gram-positive organisms and a framework for studying novel intracellular roles, including regulated cell death and life-cycle progression in multicellular bacteria.


Asunto(s)
Streptomyces coelicolor , Streptomyces , Microscopía por Crioelectrón , Citoplasma , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Muerte Celular
7.
Sci Rep ; 9(1): 6474, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31019200

RESUMEN

Type IV secretion systems are multiprotein complexes that mediate the translocation of macromolecules across the bacterial cell envelope. In Helicobacter pylori a type IV secretion system encoded by the cag pathogenicity island encodes 27 proteins and most are essential for virulence. We here present the identification and characterization of inhibitors of Cagα, a hexameric ATPase and member of the family of VirB11-like proteins that is essential for translocation of the CagA cytotoxin into mammalian cells. We conducted fragment-based screening using a differential scanning fluorimetry assay and identified 16 molecules that stabilize the protein suggesting that they bind Cagα. Several molecules affect binding of ADP and four of them inhibit the ATPase activity. Analysis of enzyme kinetics suggests that their mode of action is non-competitive, suggesting that they do not bind to the active site. Cross-linking suggests that the active molecules change protein conformation and gel filtration and transmission electron microscopy show that molecule 1G2 dissociates the Cagα hexamer. Addition of the molecule 1G2 inhibits the induction of interleukin-8 production in gastric cancer cells after co-incubation with H. pylori suggesting that it inhibits Cagα in vivo. Our results reveal a novel mechanism for the inhibition of the ATPase activity of VirB11-like proteins.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Helicobacter pylori/metabolismo , Multimerización de Proteína/efectos de los fármacos , Sistemas de Secreción Tipo IV/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/aislamiento & purificación , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Interleucina-8/metabolismo , Conformación Proteica/efectos de los fármacos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Virulencia
8.
Sci Rep ; 7(1): 14907, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097752

RESUMEN

The increasing frequency of antimicrobial resistance is a problem of global importance. Novel strategies are urgently needed to understand and inhibit antimicrobial resistance gene transmission that is mechanistically related to bacterial virulence functions. The conjugative transfer of plasmids by type IV secretion systems is a major contributor to antimicrobial resistance gene transfer. Here, we present a structure-based strategy to identify inhibitors of type IV secretion system-mediated bacterial conjugation. Using differential scanning fluorimetry we screened a fragment library and identified molecules that bind the essential TraE protein of the plasmid pKM101 conjugation machinery. Co-crystallization revealed that fragments bind two alternative sites of the protein and one of them is a novel inhibitor binding site. Based on the structural information on fragment binding we designed novel small molecules that have improved binding affinity. These molecules inhibit the dimerization of TraE, bind to both inhibitor binding sites on TraE and inhibit the conjugative transfer of plasmid pKM101. The strategy presented here is generally applicable for the structure-based design of inhibitors of antimicrobial resistance gene transfer and of bacterial virulence.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/antagonistas & inhibidores , Conjugación Genética/efectos de los fármacos , Plásmidos/genética , Sistemas de Secreción Tipo IV/antagonistas & inhibidores , Bacterias/genética , Bacterias/metabolismo , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Proteínas Bacterianas/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida , Multimerización de Proteína/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Sistemas de Secreción Tipo IV/metabolismo
9.
FEMS Microbiol Lett ; 364(1)2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27986823

RESUMEN

Helicobacter pylori is an important cause of gastric pathologies and persistent infection can lead to stomach cancer. Virulent H. pylori strains encode a type IV secretion system responsible for translocation of the oncogenic CagA protein into cells of the gastric mucosa. Gene HP0522 encodes the essential component Cagδ (Cag3), and we show by gel filtration and cross-linking that purified Cagδ forms high molecular mass complexes. In contrast, its interaction partner CagT is mostly monomeric, but co-fractionates after gel filtration. Analysis by transmission electron microscopy revealed that purified Cagδ complexes can self-assemble ring-like structures. Cagδ-overexpressing Escherichia coli exhibits membrane-associated circular profiles in regions of the cell envelope with intense immunogold labelling with a Cagδ-specific antiserum. Our results suggest that Cagδ has the capacity to form macromolecular structures contributing to the assembly of the type IV secretion system.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Helicobacter pylori/genética , Sistemas de Secreción Tipo IV/química , Proteínas Bacterianas/aislamiento & purificación , Cromatografía en Gel , Dicroismo Circular , Mucosa Gástrica/microbiología , Helicobacter pylori/química , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidad , Sustancias Macromoleculares , Microscopía Electrónica de Transmisión , Unión Proteica , Sistemas de Secreción Tipo IV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA