Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gastroenterology ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39173721

RESUMEN

BACKGROUND & AIMS: We recently identified a recessive syndrome due to DNA ligase 3 (LIG3) mutations in patients with chronic intestinal pseudo-obstruction, leukoencephalopathy, and neurogenic bladder. LIG3 mutations affect mitochondrial DNA maintenance, leading to defective energy production. We aimed at identifying altered molecular pathways and developing possible targeted treatments to revert/ameliorate the cellular energy impairment. METHODS: Whole transcriptome analysis was performed on patient-derived fibroblasts total RNA and controls. Mitochondrial function, mitophagy, and l-glutamine supplementation effects were analyzed by live cell analysis, immunostaining, and Western blot. Patients were treated with Dipeptiven (Fresenius-Kabi) according to standard protocols. Patients' symptoms were analyzed by the Gastrointestinal Symptom Rating Scale questionnaire. RESULTS: We identified deregulated transcripts in mutant fibroblasts vs controls, including overexpression of genes involved in extracellular matrix development and remodeling and mitochondrial functions. Gut biopsy specimens of LIG3-mutant patients documented collagen and elastic fiber accumulation. Mutant fibroblasts exhibited impaired mitochondrial mitophagy indicative of dysfunctional turnover and altered Ca2+ homeostasis. Supplementation with l-glutamine (6 mmol/L), previously shown to increase mitochondrial DNA-defective cell survival, improved growth rate and adenosine 5'-triphosphate production in LIG3-mutant fibroblasts. These data led us to provide parenterally a dipeptide containing l-glutamine to 3 siblings carrying biallelic LIG3 mutations. Compared with baseline, gastrointestinal and extra-gastrointestinal symptoms significantly improved after 8 months of treatment. CONCLUSIONS: LIG3 deficiency leads to mitochondrial dysfunction. High levels l-glutamine supplementation were beneficial in LIG3-mutant cells and improved symptom severity without noticeable adverse effects. Our results provide a proof of concept to design ad hoc clinical trials with l-glutamine in LIG3-mutant patients.

2.
Antioxidants (Basel) ; 12(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36829912

RESUMEN

Mitochondria are key players in energy production, critical activity for the smooth functioning of energy-demanding organs such as the muscles, brain, and heart. Therefore, dysregulation or alterations in mitochondrial bioenergetics primarily perturb these organs. Within the cell, mitochondria are the major site of reactive oxygen species (ROS) production through the activity of different enzymes since it is one of the organelles with the major availability of oxygen. ROS can act as signaling molecules in a number of different pathways by modulating calcium (Ca2+) signaling. Interactions among ROS and calcium signaling can be considered bidirectional, with ROS regulating cellular Ca2+ signaling, whereas Ca2+ signaling is essential for ROS production. In particular, we will discuss how alterations in the crosstalk between ROS and Ca2+ can lead to mitochondrial bioenergetics dysfunctions and the consequent damage to tissues at high energy demand, such as the heart. Changes in Ca2+ can induce mitochondrial alterations associated with reduced ATP production and increased production of ROS. These changes in Ca2+ levels and ROS generation completely paralyze cardiac contractility. Thus, ROS can hinder the excitation-contraction coupling, inducing arrhythmias, hypertrophy, apoptosis, or necrosis of cardiac cells. These interplays in the cardiovascular system are the focus of this review.

3.
Open Biol ; 13(7): 230040, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37433330

RESUMEN

Pathogenic variants in SPART cause Troyer syndrome, characterized by lower extremity spasticity and weakness, short stature and cognitive impairment, and a severe mitochondrial impairment. Herein, we report the identification of a role of Spartin in nuclear-encoded mitochondrial proteins. SPART biallelic missense variants were detected in a 5-year-old boy with short stature, developmental delay and muscle weakness with impaired walking distance. Patient-derived fibroblasts showed an altered mitochondrial network, decreased mitochondrial respiration, increased mitochondrial reactive oxygen species and altered Ca2+ versus control cells. We investigated the mitochondrial import of nuclear-encoded proteins in these fibroblasts and in another cell model carrying a SPART loss-of-function mutation. In both cell models the mitochondrial import was impaired, leading to a significant decrease in different proteins, including two key enzymes involved in CoQ10 (CoQ) synthesis, COQ7 and COQ9, with a severe reduction in CoQ content, versus control cells. CoQ supplementation restored cellular ATP levels to the same extent shown by the re-expression of wild-type SPART, suggesting CoQ treatment as a promising therapeutic approach for patients carrying mutations in SPART.


Asunto(s)
Disfunción Cognitiva , Ubiquinona , Masculino , Humanos , Preescolar , Ubiquinona/farmacología , Proteínas Nucleares , Metabolismo Energético , Proteínas Mitocondriales/genética
4.
Cancers (Basel) ; 15(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36900206

RESUMEN

Esophageal adenocarcinoma (EAC) is a severe malignancy with increasing incidence, poorly understood pathogenesis, and low survival rates. We sequenced 164 EAC samples of naïve patients (without chemo-radiotherapy) with high coverage using next-generation sequencing technologies. A total of 337 variants were identified across the whole cohort, with TP53 as the most frequently altered gene (67.27%). Missense mutations in TP53 correlated with worse cancer-specific survival (log-rank p = 0.001). In seven cases, we found disruptive mutations in HNF1alpha associated with other gene alterations. Moreover, we detected gene fusions through massive parallel sequencing of RNA, indicating that it is not a rare event in EAC. In conclusion, we report that a specific type of TP53 mutation (missense changes) negatively affected cancer-specific survival in EAC. HNF1alpha was identified as a new EAC-mutated gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA