Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 114: 104173, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33160911

RESUMEN

The application of biodegradable materials to stent design has the potential to transform coronary artery disease treatment. It is critical that biodegradable stents have sustained strength during degradation and vessel healing to prevent re-occlusion. Proper assessment of the impact of corrosion on the mechanical behaviour of potential biomaterials is important. Investigations within literature frequently implement simplified testing conditions to understand this behaviour and fail to consider size effects associated with strut thickness, or the increase in corrosion due to blood flow, both of which can impact material properties. A protocol was developed that utilizes micro-scale specimens, in conjunction with dynamic degradation, to assess the effect of corrosion on the mechanical properties of a novel Fe-316L material. Dynamic degradation led to increased specimen corrosion, resulting in a greater reduction in strength after 48 h of degradation in comparison to samples statically corroded. It was found that thicker micro-tensile samples (h > 200 µm) had a greater loss of strength in comparison to its thinner counterpart (h < 200 µm), due to increased corrosion of the thicker samples (203 MPa versus 260 MPa after 48 h, p = 0.0017). This investigation emphasizes the necessity of implementing physiologically relevant testing conditions, including dynamic corrosion and stent strut thickness, when evaluating potential biomaterials for biodegradable stent application.


Asunto(s)
Enfermedad de la Arteria Coronaria , Stents , Implantes Absorbibles , Aleaciones , Materiales Biocompatibles , Corrosión , Humanos , Ensayo de Materiales
2.
ACS Biomater Sci Eng ; 4(11): 3864-3873, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33429615

RESUMEN

Biodegradable magnesium alloy stents exhibit deficient corrosion period for clinic applications, making the protective polymer coating more crucial than drug-eluting stents with the permanent metal scaffold. We implemented a cohesive method based on a finite element analysis method to predict the integrity of adhesive between coating and stent during the crimping and deployment. For the first time, the three-dimensional quantitative modeling reveals the process of polymer coating delamination and stress concentration. The fracture and microcracks of coatings were consistent with the simulation result, confirmed by the scanning electron microscopy observation. Moreover, we analyzed four possible factors, i.e., stent design, strut material, coating polymer, and thickness of the coating, affecting the stent-coating damage and the distribution of the stress in coatings. Mg-Nd-Zn-Zr alloy with lower yield strength performed a more uniform strain distribution and more favorable adhesion of the coating than the commercial magnesium alloy AZ31. Shape optimization of stent design improves the strain and stress distribution of coating remarkably, avoiding coating delamination. Additionally, PLGA coating with lower elastic modulus and yield strength tends to follow the deformation of the stent better and to adhere on the surface more tightly, compared to PLLA polymer. A reduction in coating thickness and an increase in the strength of stent-coating interface improve the resistance to delamination. Our framework based on cohesive method provides an in-depth understanding of stent-coating damage and shows the way of computational analyses could be implemented in the design of coated biodegradable magnesium stents.

3.
Biomed Mater ; 13(5): 055006, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29869614

RESUMEN

Three-dimensional (3D) tissue models offer new tools in the study of diseases. In the case of the engineering of cardiac muscle, a realistic goal would be the design of a scaffold able to replicate the tissue-specific architecture, mechanical properties, and chemical composition, so that it recapitulates the main functions of the tissue. This work is focused on the design and preliminary biological validation of an innovative polyester urethane (PUR) scaffold mimicking cardiac tissue properties. The porous scaffold was fabricated by thermally induced phase separation (TIPS) from poly(ε-caprolactone) diol, 1,4-butanediisocyanate, and l-lysine ethyl ester. Morphological and mechanical scaffolds characterization was accomplished by confocal microscopy, and micro-tensile and compression techniques. Scaffolds were then functionalized with fibronectin by plasma treatment, and the surface treatment was studied by x-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectra, and contact angle measurements. Primary rat neonatal cardiomyocytes were seeded on scaffolds, and their colonization, survival, and beating activity were analyzed for 14 days. Signal transduction pathways and apoptosis involved in cells, the structural development of the heart, and its metabolism were analyzed. PUR scaffolds showed a porous-aligned structure and mechanical properties consistent with that of the myocardial tissue. Cardiomyocytes plated on the scaffolds showed a high survival rate and a stable beating activity. Serine/threonine kinase (AKT) and extracellular signal-regulated kinases (ERK) phosphorylation was higher in cardiomyocytes cultured on the PUR scaffold compared to those on tissue culture plates. Real-time polymerase chain reaction analysis showed a significant modulation at 14 days of cardiac muscle (MYH7, prepro-ET-1), hypertrophy-specific (CTGF), and metabolism-related (SLC2a1, PFKL) genes in PUR scaffolds.


Asunto(s)
Biomimética , Butanos/química , Lisina/química , Miocitos Cardíacos/metabolismo , Nitrilos/química , Poliésteres/química , Poliuretanos/química , Animales , Apoptosis , Células Cultivadas , Fuerza Compresiva , Fibronectinas/metabolismo , Humanos , Imagenología Tridimensional , Microscopía Confocal , Miocardio/metabolismo , Miocitos Cardíacos/citología , Nanofibras/química , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Espectrofotometría Infrarroja , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA