Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Chem ; 150: 107587, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38941700

RESUMEN

Molecular hybridization between structural fragments from the structures of curcumin (1) and resveratrol (2) was used as a designing tool to generate a new N-acyl-cinnamoyl-hydrazone hybrid molecular architecture. Twenty-eight new compounds were synthesized and evaluated for multifunctional activities related to Parkinson's disease (PD), including neuroprotection, antioxidant, metal chelating ability, and Keap1/Nrf2 pathway activation. Compounds 3b (PQM-161) and 3e (PQM-164) were highlighted for their significant antioxidant profile, acting directly as induced free radical stabilizers by DPPH and indirectly by modulating intracellular inhibition of t-BOOH-induced ROS formation in neuronal cells. The mechanism of action was determined as a result of Keap1/Nrf2 pathway activation by both compounds and confirmed by different experiments. Furthermore, compound 3e (PQM-164) exhibited a significant effect on the accumulation of α-synuclein and anti-inflammatory activity, leading to an expressive decrease in gene expression of iNOS, IL-1ß, and TNF-α. Overall, these results highlighted compound 3e as a promising and innovative multifunctional drug prototype candidate for PD treatment.

2.
Arch Pharm (Weinheim) ; 357(3): e2300491, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38158335

RESUMEN

Recently, the azepino[4,3-b]indole-1-one derivative 1 showed in vitro nanomolar inhibition against butyrylcholinesterase (BChE), the ChE isoform that plays a role in the progression and pathophysiology of Alzheimer's disease (AD), and protects against N-methyl- d-aspartate-induced neuronal toxicity. Three 9-R-substituted (R = F, Br, OMe) congeners were investigated. The 9-F derivative (2a) was found more potent as BChE inhibitors (half-maximal inhibitory concentration value = 21 nM) than 2b (9-Br) and 2c (9-OMe), achieving a residence time (38 s), assessed by surface plasmon resonance, threefold higher than that of 1. To progress in featuring the in vivo pharmacological characterization of 2a, herein the 18 F-labeled congener 2a was synthesized, by applying the aromatic 18 F-fluorination method, and its whole-body distribution in healthy mice, including brain penetration, was evaluated through positron emission tomography imaging. [18 F]2a exhibited a rapid and high brain uptake (3.35 ± 0.26% ID g-1 at 0.95 ± 0.15 min after injection), followed by a rapid clearance (t1/2 = 6.50 ± 0.93 min), showing good blood-brain barrier crossing. After a transient liver accumulation of [18 F]2a, the intestinal and urinary excretion was quantified. Finally, ex vivo pharmacological experiments in mice showed that the unlabeled 2a affects the transmitters' neurochemistry, which might be favorable to reverse cognition impairment in mild-to-moderate AD-related dementias.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Butirilcolinesterasa , Relación Estructura-Actividad , Transporte Biológico , Indoles
3.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928509

RESUMEN

Inhibitors of monoamine oxidases (MAOs) are of interest for the treatment of neurodegenerative disorders and other human pathologies. In this frame, the present work describes different synthetic strategies to obtain MAO inhibitors via the coupling of the aminocoumarin core with arylsulfonyl chlorides followed by copper azide-alkyne cycloaddition, leading to coumarin-sulfonamide-nitroindazolyl-triazole hybrids. The nitration position on the coumarin moiety was confirmed through nuclear magnetic resonance spectroscopy and molecular electron density theory in order to elucidate the molecular mechanism and selectivity of the electrophilic aromatic substitution reaction. The coumarin derivatives were evaluated for their inhibitory potency against monoamine oxidases and cholinesterases. Molecular docking calculations provided a rational binding mode of the best compounds in the series with MAO A and B. The work identified hybrids 14a-c as novel MAO inhibitors, with a selective action against isoform B, of potential interest to combat neurological diseases.


Asunto(s)
Cumarinas , Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Triazoles , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/síntesis química , Triazoles/química , Triazoles/farmacología , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Humanos , Sulfonamidas/química , Sulfonamidas/farmacología , Relación Estructura-Actividad , Estructura Molecular , Teoría Funcional de la Densidad
4.
Bioorg Med Chem ; 84: 117256, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37003157

RESUMEN

A library of eighteen thienocycloalkylpyridazinones was synthesized for human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibition and serotonin 5-HT6 receptor subtype interaction by following a multitarget-directed ligand approach (MTDL), as a suitable strategy for treatment of Alzheimer's disease (AD). The novel compounds featured a tricyclic scaffold, namely thieno[3,2-h]cinnolinone, thienocyclopentapyridazinone and thienocycloheptapyridazinone, connected through alkyl chains of variable length to proper amine moieties, most often represented by N-benzylpiperazine or 1-(phenylsulfonyl)-4-(piperazin-1-ylmethyl)-1H-indole as structural elements addressing AChE and 5-HT6 interaction, respectively. Our study highlighted the versatility of thienocycloalkylpyridazinones as useful architectures for AChE interaction, with several N-benzylpiperazine-based analogues emerging as potent and selective hAChE inhibitors with IC50 in the 0.17-1.23 µM range, exhibiting low to poor activity for hBChE (IC50 = 4.13-9.70 µM). The introduction of 5-HT6 structural moiety phenylsulfonylindole in place of N-benzylpiperazine, in tandem with a pentamethylene linker, gave potent 5-HT6 thieno[3,2-h]cinnolinone and thienocyclopentapyridazinone-based ligands both displaying hAChE inhibition in the low micromolar range and unappreciable activity towards hBChE. While docking studies provided a rational structural explanation for AChE/BChE enzyme and 5-HT6 receptor interaction, in silico prediction of ADME properties of tested compounds suggested further optimization for development of such compounds in the field of MTDL for AD.


Asunto(s)
Acetilcolinesterasa , Enfermedad de Alzheimer , Humanos , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Serotonina , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Ligandos , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
5.
Bioorg Chem ; 130: 106261, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36399866

RESUMEN

In this work, we have investigated the one pot strategy for the Cu(I)-mediated synthesis of new triazoles bearing nitroindazole moieties using different copper catalysts. The biological activity of newly synthesized nitroindazolyltriazoles towards Alzheimer's disease-related targets, namely cholinesterases, monoamine oxidases, and amyloid aggregation, were investigated. Predictions of target affinity, physicochemical parameters, gastrointestinal absorption and brain penetration were achieved by means of in silico tools.


Asunto(s)
Enfermedad de Alzheimer , Indazoles , Triazoles , Enfermedad de Alzheimer/tratamiento farmacológico , Proteínas Amiloidogénicas , Encéfalo , Colinesterasas , Monoaminooxidasa , Indazoles/síntesis química , Triazoles/síntesis química , Cobre/química , Catálisis
6.
J Enzyme Inhib Med Chem ; 38(1): 2175821, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36789662

RESUMEN

Neurodegenerative diseases such as Alzheimer's disease (AD) are multifactorial with several different pathologic mechanisms. Therefore, it is assumed that multitargeted-directed ligands (MTDLs) which interact with different biological targets relevant to the diseases, might offer an improved therapeutic alternative than using the traditional "one-target, one-molecule" approach. Herein, we describe new benzothiazole-based derivatives as a privileged scaffold for histamine H3 receptor ligands (H3R). The most affine compound, the 3-(azepan-1-yl)propyloxy-linked benzothiazole derivative 4b, displayed a Ki value of 0.012 µM. The multitargeting potential of these H3R ligands towards AChE, BuChE and MAO-B enzymes was evaluated to yield compound 3s (pyrrolidin-1-yl-(6-((5-(pyrrolidin-1-yl)pentyl)oxy)benzo[d]thiazol-2-yl)methanone) as the most promising MTDL with a Ki value of 0.036 µM at H3R and IC50 values of 6.7 µM, 2.35 µM, and 1.6 µM towards AChE, BuChE, and MAO-B, respectively. These findings suggest that compound 3s can be a lead structure for developing new multi-targeting anti-AD agents.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Relación Estructura-Actividad , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Benzotiazoles/farmacología , Ligandos
7.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37175433

RESUMEN

About twenty molecules sharing 1H-chromeno[3,2-c]pyridine as the scaffold and differing in the degree of saturation of the pyridine ring, oxidation at C10, 1-phenylethynyl at C1 and 1H-indol-3-yl fragments at C10, as well as a few small substituents at C6 and C8, were synthesized starting from 1,2,3,4-tetrahydro-2-methylchromeno[3,2-c]pyridin-10-ones (1,2,3,4-THCP-10-ones, 1) or 2,3-dihydro-2-methyl-1H-chromeno[3,2-c]pyridines (2,3-DHPCs, 2). The newly synthesized compounds were tested as inhibitors of the human isoforms of monoamine oxidase (MAO A and B) and cholinesterase (AChE and BChE), and the following main SARs were inferred: (i) The 2,3-DHCP derivatives 2 inhibit MAO A (IC50 about 1 µM) preferentially; (ii) the 1,2,3,4-THCP-10-one 3a, bearing the phenylethynyl fragment at C1, returned as a potent MAO B inhibitor (IC50 0.51 µM) and moderate inhibitor of both ChEs (IC50s 7-8 µM); (iii) the 1H-indol-3-yl fragment at C10 slightly increases the MAO B inhibition potency, with the analog 6c achieving MAO B IC50 of 3.51 µM. The MAO B inhibitor 3a deserves further pharmacological studies as a remedy in the symptomatic treatment of Parkinson's disease and neuroprotectant for Alzheimer's disease. Besides the established neuroprotective effects of MAO inhibitors, the role of MAOs in tumor insurgence and progression has been recently reported. Herein, antiproliferative assays with breast (MCF-7), colon (HCT116) and cisplatin-resistant ovarian (SK-OV-3) tumor cells revealed that the 10-indolyl-bearing 2,3,4,10-THCP analog 6c exerts anti-tumor activity with IC50s in the range 4.83-11.3 µM.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Humanos , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad , Monoaminooxidasa/metabolismo , Piridinas/farmacología , Inhibidores de la Colinesterasa/química
8.
Molecules ; 28(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838649

RESUMEN

In this work, 2-alkyl-10-chloro-1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridines were obtained and their reactivity was studied. Novel derivatives of the tricyclic scaffold, including 1-phenylethynyl (5), 1-indol-3-yl (8), and azocino[4,5-b]quinoline (10) derivatives, were synthesized and characterized herein for the first time. Among the newly synthesized derivatives, 5c-h proved to be MAO B inhibitors with potency in the low micromolar range. In particular, the 1-(2-(4-fluorophenyl)ethynyl) analog 5g achieved an IC50 of 1.35 µM, a value close to that of the well-known MAO B inhibitor pargyline.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Pargilina , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Naftiridinas , Relación Estructura-Actividad
9.
Molecules ; 28(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570828

RESUMEN

The multitarget therapeutic strategy, as opposed to the more traditional 'one disease-one target-one drug', may hold promise in treating multifactorial neurodegenerative syndromes, such as Alzheimer's disease (AD) and related dementias. Recently, combining a photopharmacology approach with the multitarget-directed ligand (MTDL) design strategy, we disclosed a novel donepezil-like compound, namely 2-(4-((diethylamino)methyl)benzylidene)-5-methoxy-2,3-dihydro-1H-inden-1-one (1a), which in the E isomeric form (and about tenfold less in the UV-B photo-induced isomer Z) showed the best activity as dual inhibitor of the AD-related targets acetylcholinesterase (AChE) and monoamine oxidase B (MAO-B). Herein, we investigated further photoisomerizable 2-benzylideneindan-1-one analogs 1b-h with the unconjugated tertiary amino moiety bearing alkyls of different bulkiness and lipophilicity. For each compound, the thermal stable E geometric isomer, along with the E/Z mixture as produced by UV-B light irradiation in the photostationary state (PSS, 75% Z), was investigated for the inhibition of human ChEs and MAOs. The pure E-isomer of the N-benzyl(ethyl)amino analog 1h achieved low nanomolar AChE and high nanomolar MAO-B inhibition potencies (IC50s 39 and 355 nM, respectively), whereas photoisomerization to the Z isomer (75% Z in the PSS mixture) resulted in a decrease (about 30%) of AChE inhibitory potency, and not in the MAO-B one. Molecular docking studies were performed to rationalize the different E/Z selectivity of 1h toward the two target enzymes.


Asunto(s)
Enfermedad de Alzheimer , Monoaminooxidasa , Humanos , Monoaminooxidasa/metabolismo , Acetilcolinesterasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Relación Estructura-Actividad , Enfermedad de Alzheimer/tratamiento farmacológico
10.
Mol Divers ; 26(2): 1243-1247, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33538985

RESUMEN

Various 4'-R-substituted phenyl azacyclic allenes were synthesized in good yields, and their thermal transformations were studied. For the first time, the obtained rearrangement products-new N-bridged cyclopenta[a]indenes, and the corresponding parent allenes were evaluated as potential inhibitors of acetyl- and butyrylcholinesterase. Among the tested compounds, the allene derivative 2g proved to competitively inhibit human AChE with inhibition constant value (Ki) in the low micromolar range.


Asunto(s)
Butirilcolinesterasa , Inhibidores de la Colinesterasa , Acetilcolinesterasa/metabolismo , Alcadienos , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Humanos , Estructura Molecular , Relación Estructura-Actividad
11.
Molecules ; 27(13)2022 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-35807514

RESUMEN

The rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to the glycinamide one, as a linker connecting the P1 benzamidine anchoring moiety to the P4 aryl group of novel selective fXa inhibitors. We carried out structure-activity relationship (SAR) studies aimed at investigating para- or meta-benzamidine as the P1 basic group as well as diversely decorated aryl moieties as P4 fragments. To this end, twenty-three malonamide derivatives were synthesized and tested as inhibitors of fXa and thrombin (thr); the molecular determinants behind potency and selectivity were also studied by employing molecular docking. The malonamide linker, compared to the glycinamide one, does significantly increase anti-fXa potency and selectivity. The meta-benzamidine (P1) derivatives bearing 2',4'-difluoro-biphenyl as the P4 moiety proved to be highly potent reversible fXa-selective inhibitors, achieving inhibition constants (Ki) in the low nanomolar range. The most active compounds were also tested against cholinesterase (ChE) isoforms (acetyl- or butyrylcholinesterase, AChE, and BChE), and some of them returned single-digit micromolar inhibition potency against AChE and/or BChE, both being drug targets for symptomatic treatment of mild-to-moderate Alzheimer's disease. Compounds 19h and 22b were selected as selective fXa inhibitors with potential as multimodal neuroprotective agents.


Asunto(s)
Benzamidinas , Inhibidores de la Colinesterasa , Inhibidores del Factor Xa , Malonatos , Acetilcolinesterasa , Benzamidinas/química , Butirilcolinesterasa , Inhibidores de la Colinesterasa/química , Diseño de Fármacos , Factor Xa , Inhibidores del Factor Xa/química , Fibrinolíticos/química , Glicina/análogos & derivados , Glicina/química , Malonatos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
12.
Molecules ; 27(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35164223

RESUMEN

A new series of aryloxyacetic acids was prepared and tested as peroxisome proliferator-activated receptors (PPARs) agonists and fatty acid amide hydrolase (FAAH) inhibitors. Some compounds exhibited an interesting dual activity that has been recently proposed as a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). AD is a multifactorial pathology, hence multi-target agents are currently one of the main lines of research for the therapy and prevention of this disease. Given that cholinesterases represent one of the most common targets of recent research, we decided to also evaluate the effects of our compounds on the inhibition of these specific enzymes. Interestingly, two of these compounds, (S)-5 and 6, showed moderate activity against acetylcholinesterase (AChE) and even some activity, although at high concentration, against Aß peptide aggregation, thus demonstrating, in agreement with the preliminary dockings carried out on the different targets, the feasibility of a simultaneous multi-target activity towards PPARs, FAAH, and AChE. As far as we know, these are the first examples of molecules endowed with this pharmacological profile that might represent a promising line of research for the identification of novel candidates for the treatment of AD.


Asunto(s)
Ácido Acético/química , Acetilcolinesterasa/química , Amidohidrolasas/antagonistas & inhibidores , Receptores Activados del Proliferador del Peroxisoma/agonistas , Inhibidores de la Colinesterasa , Humanos
13.
Molecules ; 27(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36364263

RESUMEN

Alzheimer's disease (AD) is a complex disorder characterized by impaired neurotransmission in cholinergic and monoaminergic neurons, which, in combination with the accumulation of misfolded proteins and increased oxidative stress, leads to the typical features of the disease at the biomolecular level. Given the limited therapeutic success of approved drugs, it is imperative to explore rationally supported therapeutic approaches to combat this disease. The search for novel scaffolds that bind to different receptors and inhibit AD disease-related enzymes could lead to new therapeutic solutions. Here, we describe N-hydroxy-N-propargylamide hybrids 1-6, which were designed by combining the structures of Contilisant-a multifunctional anti-AD ligand-and ferulic acid, a natural antioxidant with various other biological activities. Among the synthesized compounds, we identified compound 4 as a micromolar inhibitor of hAChE with a potent radical-scavenging capacity comparable to resveratrol and Trolox. In addition, compound 4 chelated copper(II) ions associated with amyloid ß pathology, mitochondrial dysfunction, and oxidative stress. The promising in vitro activity combined with favorable drug-like properties and predicted blood-brain barrier permeability make compound 4 a multifunctional ligand that merits further studies at the biochemical and cellular levels.


Asunto(s)
Enfermedad de Alzheimer , Monoaminooxidasa , Humanos , Monoaminooxidasa/metabolismo , Colinesterasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Colinesterasa/química , Ligandos , Enfermedad de Alzheimer/metabolismo , Antioxidantes/química , Acetilcolinesterasa/metabolismo
14.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234811

RESUMEN

Transformations of 1-methoxymethylethynyl substituted isoquinolines triggered by terminal alkynes in alcohols were studied and new 3-benzazecine-containing compounds synthesized, such as 6-methoxymethyl-3-benzazecines incorporating an endocyclic C6-C8 allene fragment and the -ylidene derivatives 6-methoxymethylene-3-benzazecines. The reaction mechanisms were investigated and a preliminary in vitro screening of their potential inhibitory activities against human acetyl- and butyrylcholinesterases (AChE and BChE) and monoamine oxidases A and B (MAO-A and MAO-B) showed that the allene compounds were more potent than the corresponding -ylidene ones as selective AChE inhibitors. Among the allenes, 3e (R3 = CH2OMe) was found to be a competitive AChE inhibitor with a low micromolar inhibition constant value (Ki = 4.9 µM), equipotent with the corresponding 6-phenyl derivative 3n (R3 = Ph, Ki = 4.5 µM), but 90-fold more water-soluble.


Asunto(s)
Inhibidores de la Colinesterasa , Inhibidores de la Monoaminooxidasa , Acetilcolinesterasa/metabolismo , Alcoholes , Alcadienos , Alquinos , Butirilcolinesterasa/química , Inhibidores de la Colinesterasa/química , Humanos , Isoquinolinas , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad , Agua
15.
Molecules ; 26(17)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34500640

RESUMEN

Recently, the direct thrombin (thr) inhibitor dabigatran has proven to be beneficial in animal models of Alzheimer's disease (AD). Aiming at discovering novel multimodal agents addressing thr and AD-related targets, a selection of previously and newly synthesized potent thr and factor Xa (fXa) inhibitors were virtually screened by the Multi-fingerprint Similarity Searching aLgorithm (MuSSeL) web server. The N-phenyl-1-(pyridin-4-yl)piperidine-4-carboxamide derivative 1, which has already been experimentally shown to inhibit thr with a Ki value of 6 nM, has been flagged by a new, upcoming release of MuSSeL as a binder of cholinesterase (ChE) isoforms (acetyl- and butyrylcholinesterase, AChE and BChE), as well as thr, fXa, and other enzymes and receptors. Interestingly, the inhibition potency of 1 was predicted by the MuSSeL platform to fall within the low-to-submicromolar range and this was confirmed by experimental Ki values, which were found equal to 0.058 and 6.95 µM for eeAChE and eqBChE, respectively. Thirty analogs of 1 were then assayed as inhibitors of thr, fXa, AChE, and BChE to increase our knowledge of their structure-activity relationships, while the molecular determinants responsible for the multiple activities towards the target enzymes were rationally investigated by molecular cross-docking screening.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Trombina/metabolismo , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Butirilcolinesterasa/metabolismo , Bovinos , Factor Xa/metabolismo , Inhibidores del Factor Xa/farmacología , Humanos , Simulación del Acoplamiento Molecular , Piperidinas/farmacología , Relación Estructura-Actividad
16.
Molecules ; 26(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445600

RESUMEN

Marine alkaloids belonging to the lamellarins family, which incorporate a 5,6-dihydro-1-phenylpyrrolo[2,1-a]isoquinoline (DHPPIQ) moiety, possess various biological activities, spanning from antiviral and antibiotic activities to cytotoxicity against tumor cells and the reversal of multidrug resistance. Expanding a series of previously reported imino adducts of DHPPIQ 2-carbaldehyde, novel aliphatic and aromatic Schiff bases were synthesized and evaluated herein for their cytotoxicity in five diverse tumor cell lines. Most of the newly synthesized compounds were found noncytotoxic in the low micromolar range (<30 µM). Based on a Multi-fingerprint Similarity Search aLgorithm (MuSSeL), mainly conceived for making protein drug target prediction, some DHPPIQ derivatives, especially bis-DHPPIQ Schiff bases linked by a phenylene bridge, were prioritized as potential hits addressing Alzheimer's disease-related target proteins, such as cholinesterases (ChEs) and monoamine oxidases (MAOs). In agreement with MuSSeL predictions, homobivalent para-phenylene DHPPIQ Schiff base 14 exhibited a noncompetitive/mixed inhibition of human acetylcholinesterase (AChE) with Ki in the low micromolar range (4.69 µM). Interestingly, besides a certain inhibition of MAO A (50% inhibition of the cell population growth (IC50) = 12 µM), the bis-DHPPIQ 14 showed a good inhibitory activity on self-induced ß-amyloid (Aß)1-40 aggregation (IC50 = 13 µM), which resulted 3.5-fold stronger than the respective mono-DHPPIQ Schiff base 9.


Asunto(s)
Enfermedad de Alzheimer/patología , Isoquinolinas/farmacología , Neoplasias/patología , Bases de Schiff/farmacología , Acetilcolinesterasa/metabolismo , Péptidos beta-Amiloides/metabolismo , Butirilcolinesterasa/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología , Humanos , Isoquinolinas/química , Cinética , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Bases de Schiff/química
17.
Molecules ; 26(1)2020 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-33375412

RESUMEN

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease towards which pleiotropic approach using Multi-Target Directed Ligands is nowadays recognized as probably convenient. Among the numerous targets which are today validated against AD, acetylcholinesterase (ACh) and Monoamine Oxidase-B (MAO-B) appear as particularly convincing, especially if displayed by a sole agent such as ladostigil, currently in clinical trial in AD. Considering these results, we wanted to take benefit of the structural analogy lying in donepezil (DPZ) and rasagiline, two indane derivatives marketed as AChE and MAO-B inhibitors, respectively, and to propose the synthesis and the preliminary in vitro biological characterization of a structural compromise between these two compounds, we called propargylaminodonepezil (PADPZ). The synthesis of racemic trans PADPZ was achieved and its biological evaluation established its inhibitory activities towards both (h)AChE (IC50 = 0.4 µM) and (h)MAO-B (IC50 = 6.4 µM).


Asunto(s)
Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Donepezilo/síntesis química , Donepezilo/uso terapéutico , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/uso terapéutico , Donepezilo/química , Donepezilo/farmacología , Humanos , Modelos Moleculares , Conformación Molecular , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/uso terapéutico , Estereoisomerismo
18.
Molecules ; 25(23)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297547

RESUMEN

Thirty-six novel indole-containing compounds, mainly 3-(2-phenylhydrazono) isatins and structurally related 1H-indole-3-carbaldehyde derivatives, were synthesized and assayed as inhibitors of beta amyloid (Aß) aggregation, a hallmark of pathophysiology of Alzheimer's disease. The newly synthesized molecules spanned their IC50 values from sub- to two-digit micromolar range, bearing further information into structure-activity relationships. Some of the new compounds showed interesting multitarget activity, by inhibiting monoamine oxidases A and B. A cell-based assay in tau overexpressing bacterial cells disclosed a promising additional activity of some derivatives against tau aggregation. The accumulated data of either about ninety published and thirty-six newly synthesized molecules were used to generate a pharmacophore hypothesis of antiamyloidogenic activity exerted in a wide range of potencies, satisfactorily discriminating the 'active' compounds from the 'inactive' (poorly active) ones. An atom-based 3D-QSAR model was also derived for about 80% of 'active' compounds, i.e., those achieving finite IC50 values lower than 100 µM. The 3D-QSAR model (encompassing 4 PLS factors), featuring acceptable predictive statistics either in the training set (n = 45, q2 = 0.596) and in the external test set (n = 14, r2ext = 0.695), usefully complemented the pharmacophore model by identifying the physicochemical features mainly correlated with the Aß anti-aggregating potency of the indole and isatin derivatives studied herein.


Asunto(s)
Péptidos beta-Amiloides/química , Indoles/química , Isatina/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Técnicas de Química Sintética , Citoprotección/efectos de los fármacos , Diseño de Fármacos , Humanos , Indoles/farmacología , Isatina/farmacología , Ligandos , Conformación Molecular , Estructura Molecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos
19.
Molecules ; 24(24)2019 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835376

RESUMEN

A series of 4-aminomethyl-7-benzyloxy-2H-chromen-2-ones was investigated with the aim of identifying multiple inhibitors of cholinesterases (acetyl- and butyryl-, AChE and BChE) and monoamine oxidase B (MAO B) as potential anti-Alzheimer molecules. Starting from a previously reported potent MAO B inhibitor (3), we studied single-point modifications at the benzyloxy or at the basic moiety. The in vitro screening highlighted triple-acting compounds (6, 8, 9, 16, 20) showing nanomolar and selective MAO B inhibition along with IC50 against ChEs at the low micromolar level. Enzyme kinetics analysis toward AChE and docking simulations on the target enzymes were run in order to get insight into the mechanism of action and plausible binding modes.


Asunto(s)
Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Cumarinas/química , Cumarinas/farmacología , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , para-Aminobenzoatos/química , Evaluación Preclínica de Medicamentos , Activación Enzimática , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad
20.
Molecules ; 24(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775359

RESUMEN

The orphan drug dantrolene (DAN) is the only therapeutic treatment for malignant hyperthermia (MH), a pharmacogenetic pathology affecting 0.2 over 10,000 people in the EU. It acts by inhibiting ryanodine receptors, which are responsible for calcium recruitment in striatal muscles and brain. Because of its involvement in calcium homeostasis, DAN has been successfully investigated for its potential as neuroprotecting small molecule in several animal models of Alzheimer's disease (AD). Nevertheless, its effects at a molecular level, namely on putative targets involved in neurodegeneration, are still scarcely known. Herein, we present a prospective study on repurposing of DAN involving, besides the well-known calcium antagonism, inhibition of monoamine oxidase B and acetylcholinesterase, cytoprotection from oxidative insult, and activation of carnitine/acylcarnitine carrier, as concurring biological activities responsible for neuroprotection.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Calcio/metabolismo , Dantroleno/farmacología , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa/efectos de los fármacos , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/patología , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Carnitina/análogos & derivados , Carnitina/metabolismo , Línea Celular , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Dantroleno/química , Reposicionamiento de Medicamentos , Humanos , Hipertermia Maligna/tratamiento farmacológico , Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA