Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34641133

RESUMEN

Biomaterials have long been explored in regenerative medicine strategies for the repair or replacement of damaged organs and tissues, due to their biocompatibility, versatile physicochemical properties and tuneable mechanical cues capable of matching those of native tissues. However, poor adhesion under wet conditions (such as those found in tissues) has thus far limited their wider application. Indeed, despite its favourable physicochemical properties, facile gelation and biocompatibility, gellan gum (GG)-based hydrogels lack the tissue adhesiveness required for effective clinical use. Aiming at assessing whether substitution of GG by dopamine (DA) could be a suitable approach to overcome this problem, database searches were conducted on PubMed® and Embase® up to 2 March 2021, for studies using biomaterials covalently modified with a catechol-containing substituent conferring improved adhesion properties. In this regard, a total of 47 reports (out of 700 manuscripts, ~6.7%) were found to comply with the search/selection criteria, the majority of which (34/47, ~72%) were describing the modification of natural polymers, such as chitosan (11/47, ~23%) and hyaluronic acid (6/47, ~13%); conjugation of dopamine (as catechol "donor") via carbodiimide coupling chemistry was also predominant. Importantly, modification with DA did not impact the biocompatibility and mechanical properties of the biomaterials and resulting hydrogels. Overall, there is ample evidence in the literature that the bioinspired substitution of polymers of natural and synthetic origin by DA or other catechol moieties greatly improves adhesion to biological tissues (and other inorganic surfaces).

2.
Biomater Sci ; 8(13): 3697-3711, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32483582

RESUMEN

A dopamine-modified, bioinspired gellan gum hydrogel (STM-148B) with improved physicochemical and biological characteristics, suitable for minimally invasive cell delivery and retention in the context of cartilage repair, is herein presented. STM-148B's putative game-changing design characteristics include a highly biocompatible, animal-free and chemically defined composition, reproducibility of manufacture and ease of formulation. STM-148B undergoes rapid ionic crossinking by physiologically relevant mono and divalent cations to form stable 3D hydrogels that possess excellent tissue adhesiveness, such that additional fixation aids are rendered superfluous. STM-148B hydrogels maintain viability of mammalian cells and further promote up-regulation of the expression of healthy chondrogenic extracellular matrix markers upon stimulation. STM-148B is currently undergoing pre-clinical safety and efficacy assessment as a medical device for cell delivery and retention focussing on regeneration of hyaline-like cartilage and may represent a valuable addition to the armamentarium of tissue-engineering therapies for treatment of focal cartilage lesions.


Asunto(s)
Materiales Biocompatibles/química , Condrogénesis , Hidrogeles/química , Polisacáridos Bacterianos/química , Animales , Materiales Biocompatibles/síntesis química , Células Cultivadas , Hidrogeles/síntesis química , Ratones , Conformación Molecular , Tamaño de la Partícula , Polisacáridos Bacterianos/síntesis química , Propiedades de Superficie , Adhesivos Tisulares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA