Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Braz J Microbiol ; 55(2): 1251-1263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492163

RESUMEN

Natural pigments have received special attention from the market and industry as they could overcome the harm to health and the environmental issues caused by synthetic pigments. These pigments are commonly extracted from a wide range of organisms, and when added to products they can alter/add new physical-chemical or biological properties to them. Fungi from extreme environments showed to be a promising source in the search for biomolecules with antimicrobial and antiparasitic potential. This study aimed to isolate fungi from Antarctic soils and screen them for pigment production with antimicrobial and antiparasitic potential, together with other previously isolated strains A total of 52 fungi were isolated from soils in front of the Collins Glacier (Southeast border). Also, 106 filamentous fungi previously isolated from the Collins Glacier (West border) were screened for extracellular pigment production. Five strains were able to produce extracellular pigments and were identified by ITS sequencing as Talaromyces cnidii, Pseudogymnoascus shaanxiensis and Pseudogymnoascus sp. All Pseudogymnoascus spp. (SC04.P3, SC3.P3, SC122.P3 and ACF093) extracts were able to inhibit S. aureus ATCC6538 and two (SC12.P3, SC32.P3) presented activity against Leishmania (L.) infantum, Leishmania amazonensis and Trypanossoma cruzii. Extracts compounds characterization by UPLC-ESI-QToF analysis confirmed the presence of molecules with biological activity such as: Asterric acid, Violaceol, Mollicellin, Psegynamide A, Diorcinol, Thailandolide A. In conclusion, this work showed the potential of Antartic fungal strains from Collins Glacier for bioactive molecules production with activity against Gram positive bacteria and parasitic protozoas.


Asunto(s)
Antiparasitarios , Pigmentos Biológicos , Regiones Antárticas , Pigmentos Biológicos/farmacología , Pigmentos Biológicos/biosíntesis , Antiparasitarios/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Hongos/efectos de los fármacos , Hongos/metabolismo , Hongos/clasificación , Microbiología del Suelo , Bacterias/efectos de los fármacos , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Pruebas de Sensibilidad Microbiana , Animales , Staphylococcus aureus/efectos de los fármacos
2.
Braz J Microbiol ; 54(3): 1675-1687, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37286926

RESUMEN

The Antarctic continent is an extreme environment recognized mainly by its subzero temperatures. Fungi are ubiquitous microorganisms that stand out even among Antarctic organisms, primarily due to secondary metabolites production with several biological activities. Pigments are examples of such metabolites, which mainly occur in response to hostile conditions. Various pigmented fungi have been isolated from the Antarctic continent, living in the soil, sedimentary rocks, snow, water, associated with lichens, mosses, rhizospheres, and zooplankton. Physicochemical extreme environments provide a suitable setup for microbial pigment production with unique characteristics. The biotechnological potential of extremophiles, combined with concerns over synthetic pigments, has led to a great interest in natural pigment alternatives. Besides biological activities provided by fungal pigments for surviving in extreme environments (e.g., photoprotection, antioxidant activity, and stress resistance), it may present an opportunity for biotechnological industries. This paper reviews the biotechnological potential of Antarctic fungal pigments, with a detailed discussion over the biological role of fungal pigments, potential industrial production of pigments from extremophilic fungi, pigments toxicity, current market perspective and published intellectual properties related to pigmented Antarctic fungi.


Asunto(s)
Biotecnología , Hongos , Regiones Antárticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA