Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Mol Graph Model ; 23(1): 69-76, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15331055

RESUMEN

As a basis for predicting structural features that may lead to the design of more potent and selective inhibitors of choline acetyltransferase (ChAT), the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were carried out on a series of trans-1-methyl-4-(1-naphthylvinyl)pyridinium (MNVP+) analogs, which are known ChAT inhibitors. 3D-QSAR studies were carried out using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. Since these inhibitors have extremely shallow potential energy minimum energy wells and low barriers to rotation, two dihedral angles unique to these inhibitors were systematically modified to reflect the energetically preferred conformations as determined by force field calculations. An optimum alignment rule was devised based on the conformations obtained from the molecular mechanics studies, using a common substructure alignment method. The studies involve a set of 21 compounds and experimentally determined molar IC50 values were used as the dependent variable in the analysis. The 3D-QSAR models have conventional r2-values of 0.953 and 0.954 for CoMFA and CoMSIA, respectively; similarly, cross-validated coefficient q2-values of 0.755 and 0.834 for CoMFA and CoMSIA, respectively, were obtained. On the basis of these predictive r2-values the model was tested using previously determined IC50 values. CoMSIA 3D-QSAR yielded better results than CoMFA.


Asunto(s)
Colina O-Acetiltransferasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Conformación Molecular , Compuestos de Piridinio/química , Relación Estructura-Actividad Cuantitativa , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA