Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Pharm ; 21(7): 3603-3612, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864426

RESUMEN

Understanding the internalization of nanosized particles by mucosal epithelial cells is essential in a number of areas including viral entry at mucosal surfaces, nanoplastic pollution, as well as design and development of nanotechnology-type medicines. Here, we report our comparative study on pathways of cellular internalization in epithelial Caco-2 cells cultured in vitro as either a polarized, differentiated cell layer or as nonpolarized, nondifferentiated cells. The study reveals a number of differences in the extent that endocytic processes are used by cells, depending on their differentiation status and the nature of applied nanoparticles. In polarized cells, actin-driven and dynamin-independent macropinocytosis plays a prominent role in the internalization of both positively and negatively charged nanoparticles, contrary to its modest contribution in nonpolarized cells. Clathrin-mediated cellular entry plays a prominent role in the endocytosis of positive nanoparticles and cholesterol inhibition in negative nanoparticles. However, in nonpolarized cells, dynamin-dependent endocytosis is a major pathway in the internalization of both positive and negative nanoparticles. Cholesterol depletion affects both nonpolarized and polarized cells' internalization of positive and negative nanoparticles, which, in addition to the effect of cholesterol-binding inhibitors on the internalization of negative nanoparticles, indicates the importance of membrane cholesterol in endocytosis. The data collectively provide a new contribution to understanding endocytic pathways in epithelial cells, particularly pointing to the importance of the cell differentiation stage and the nature of the cargo.


Asunto(s)
Diferenciación Celular , Endocitosis , Células Epiteliales , Nanopartículas , Humanos , Endocitosis/fisiología , Células CACO-2 , Nanopartículas/química , Diferenciación Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Dinaminas/metabolismo , Colesterol/metabolismo , Colesterol/química , Clatrina/metabolismo
2.
Mol Pharm ; 16(2): 618-631, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30608696

RESUMEN

Amphipathic, nonionic, surfactants are widely used in pharmaceutical, food, and agricultural industry to enhance product features; as pharmaceutical excipients, they are also aimed at increasing cell membrane permeability and consequently improving oral drugs absorption. Here, we report on the concentration- and time-dependent succession of events occurring throughout and subsequent exposure of Caco-2 epithelium to a "typical" nonionic surfactant (Kolliphor HS15) to provide a molecular explanation for nonionic surfactant cytotoxicity. The study shows that the conditions of surfactant exposure, which increase plasma membrane fluidity and permeability, produced rapid (within 5 min) redox and mitochondrial effects. Apoptosis was triggered early during exposure (within 10 min) and relied upon an initial mitochondrial membrane hyperpolarization (5-10 min) as a crucial step, leading to its subsequent depolarization and caspase-3/7 activation (60 min). The apoptotic pathway appears to be triggered prior to substantial surfactant-induced membrane damage (observed ≥60 min). We hence propose that the cellular response to the model nonionic surfactant is triggered via surfactant-induced increase in plasma membrane fluidity, a phenomenon akin to the stress response to membrane fluidization induced by heat shock, and consequent apoptosis. Therefore, the fluidization effect that confers surfactants the ability to enhance drug permeability may also be intrinsically linked to the propagation of their cytotoxicity. The reported observations have important implications for the safety of a multitude of nonionic surfactants used in drug delivery formulations and to other permeability enhancing compounds with similar plasma membrane fluidizing mechanisms.


Asunto(s)
Excipientes/efectos adversos , Polietilenglicoles/farmacología , Estearatos/farmacología , Apoptosis/efectos de los fármacos , Células CACO-2 , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , Oxidación-Reducción/efectos de los fármacos , Polietilenglicoles/efectos adversos , Estearatos/efectos adversos
3.
Infant Ment Health J ; 38(5): 561-574, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28833359

RESUMEN

While past research on the care of infants has been mostly with mothers, in recent times there has been a renewed attention to the father-infant relationship. This study examined differences between mother and father parental reflective functioning (PRF) or parental mentalizing; that is, the parental capacity to reason about their own and their children's behaviors by taking into consideration intentional mental states. Data were collected from 120 couples with a 1-year-old child who were participants in the West Australian Peel Child Health Study. Parental mentalizing was assessed using the Parental Reflective Functioning Questionnaire (PRFQ; Luyten, Mayes, Nijssens, & Fonagy, ). Results showed that mother and father mentalizing with their children was independent and that mothers scored slightly higher levels of mentalizing than did fathers. Paternal mentalizing was weakly associated with family income and father education, and was more strongly associated with family functioning than with maternal mentalizing. Implications for theorizing on PRF and fatherhood more generally are discussed.


Asunto(s)
Padre/psicología , Metacognición , Madres/psicología , Relaciones Padres-Hijo , Adulto , Escolaridad , Femenino , Estudios de Seguimiento , Humanos , Renta , Lactante , Masculino , Persona de Mediana Edad , Responsabilidad Parental/psicología , Autoeficacia , Encuestas y Cuestionarios , Factores de Tiempo , Australia Occidental , Adulto Joven
4.
Biomed Pharmacother ; 175: 116647, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703503

RESUMEN

OBJECTIVE: To improve the biological and toxicological properties of Mefenamic acid (MA), the galactosylated prodrug of MA named MefeGAL was included in polymeric solid dispersions (PSs) composed of poly(glycerol adipate) (PGA) and Pluronic® F68 (MefeGAL-PS). MefeGAL-PS was compared with polymeric solid formulations of MA (MA-PS) or a mixture of equal ratio of MefeGAL/MA (Mix-PS). METHODS: The in vitro and in vivo pharmacological and toxicological profiles of PSs have been investigated. In detail, we evaluated the anti-inflammatory (carrageenan-induced paw edema test), analgesic (acetic acid-induced writhing test) and ulcerogenic activity in mice after oral treatment. Additionally, the antiproliferative activity of PSs was assessed on in vitro models of colorectal and non-small cell lung cancer. RESULTS: When the PSs were resuspended in water, MefeGAL's, MA's and their mixture's apparent solubilities improved due to the interaction with the polymeric formulation. By comparing the in-vivo biological performance of MefeGAL-PS with that of MA, MefeGAL and MA-PS, it was seen that MefeGAL-PS exhibited the same sustained and delayed analgesic and anti-inflammatory profile as MefeGAL but did not cause gastrointestinal irritation. The pharmacological effect of Mix-PS was present from the first hours after administration, lasting about 44 hours with only slight gastric mucosa irritation. In-vitro evaluation indicated that Mix-PS had statistically significant higher cytotoxicity than MA-PS and MefeGAL-PS. CONCLUSIONS: These preliminary data are promising evidence that the galactosylated prodrug approach in tandem with a polymer-drug solid dispersion formulation strategy could represent a new drug delivery route to improve the solubility and biological activity of NSAIDs.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácido Mefenámico , Animales , Ácido Mefenámico/farmacología , Ácido Mefenámico/administración & dosificación , Ratones , Humanos , Masculino , Edema/tratamiento farmacológico , Edema/inducido químicamente , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Profármacos/farmacología , Profármacos/administración & dosificación , Analgésicos/farmacología , Analgésicos/administración & dosificación , Analgésicos/toxicidad , Proliferación Celular/efectos de los fármacos , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/toxicidad , Úlcera Gástrica/inducido químicamente , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/patología , Poloxámero/química
5.
Biomater Sci ; 12(7): 1822-1840, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407276

RESUMEN

Combinations of the topoisomerase II inhibitor doxorubicin and the poly (ADP-ribose) polymerase inhibitor olaparib offer potential drug-drug synergy for the treatment of triple negative breast cancers (TNBC). In this study we performed in vitro screening of combinations of these drugs, administered directly or encapsulated within polymer nanoparticles, in both 2D and in 3D spheroid models of breast cancer. A variety of assays were used to evaluate drug potency, and calculations of combination index (CI) values indicated that synergistic effects of drug combinations occurred in a molar-ratio dependent manner. It is suggested that the mechanisms of synergy were related to enhancement of DNA damage as shown by the level of double-strand DNA breaks, and mechanisms of antagonism associated with mitochondrial mediated cell survival, as indicated by reactive oxygen species (ROS) generation. Enhanced drug delivery and potency was observed with nanoparticle formulations, with a greater extent of doxorubicin localised to cell nuclei as evidenced by microscopy, and higher cytotoxicity at the same time points compared to free drugs. Together, the work presented identifies specific combinations of doxorubicin and olaparib which were most effective in a panel of TNBC cell lines, explores the mechanisms by which these combined agents might act, and shows that formulation of these drug combinations into polymeric nanoparticles at specific ratios conserves synergistic action and enhanced potency in vitro compared to the free drugs.


Asunto(s)
Antineoplásicos , Nanopartículas , Ftalazinas , Piperazinas , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Combinación de Medicamentos , Línea Celular Tumoral
6.
Green Chem ; 26(3): 1345-1355, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38323306

RESUMEN

Volumetric Additive Manufacturing (VAM) represents a revolutionary advancement in the field of Additive Manufacturing, as it allows for the creation of objects in a single, cohesive process, rather than in a layer-by-layer approach. This innovative technique offers unparalleled design freedom and significantly reduces printing times. A current limitation of VAM is the availability of suitable resins with the required photoreactive chemistry and from sustainable sources. To support the application of this technology, we have developed a sustainable resin based on polyglycerol, a bioderived (e.g., vegetable origin), colourless, and easily functionisable oligomer produced from glycerol. To transform polyglycerol-6 into an acrylate photo-printable resin we adopted a simple, one-step, and scalable synthesis route. Polyglycerol-6-acrylate fulfils all the necessary criteria for volumetric printing (transparency, photo-reactivity, viscosity) and was successfully used to print a variety of models with intricate geometries and good resolution. The waste resin was found to be reusable with minimal performance issues, improving resin utilisation and minimising waste material. Furthermore, by incorporating dopants such as poly(glycerol) adipate acrylate (PGA-A) and 10,12-pentacosadyinoic acid (PCDA), we demonstrated the ability to print objects with a diverse range of functionalities, including temperature sensing probes and a polyester excipient, highlighting the potential applications of these new resins.

7.
Colloids Surf B Biointerfaces ; 236: 113828, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452625

RESUMEN

Despite the success of polyethylene glycol-based (PEGylated) polyesters in the drug delivery and biomedical fields, concerns have arisen regarding PEG's immunogenicity and limited biodegradability. In addition, inherent limitations, including limited chemical handles as well as highly hydrophobic nature, can restrict their effectiveness in physiological conditions of the polyester counterpart. To address these matters, an increasing amount of research has been focused towards identifying alternatives to PEG. One promising strategy involves the use of bio-derived polyols, such as glycerol. In particular, glycerol is a hydrophilic, non-toxic, untapped waste resource and as other polyols, can be incorporated into polyesters via enzymatic catalysis routes. In the present study, a systematic screening is conducted focusing on the incorporation of 1,6-hexanediol (Hex) (hydrophobic diol) into both poly(glycerol adipate) (PGA) and poly(diglycerol adipate) (PDGA) at different (di)glycerol:hex ratios (30:70; 50:50 and 70:30 mol/mol) and its effect on purification upon NPs formation. By varying the amphiphilicity of the backbone, we demonstrated that minor adjustments influence the NPs formation, NPs stability, drug encapsulation, and degradation of these polymers, despite the high chemical similarity. Moreover, the best performing materials have shown good biocompatibility in both in vitro and in vivo (whole organism) tests. As preliminary result, the sample containing diglycerol and Hex in a 70:30 ratio, named as PDGA-Hex 30%, has shown to be the most promising candidate in this small library analysed. It demonstrated comparable stability to the glycerol-based samples in various media but exhibited superior encapsulation efficiency of a model hydrophobic dye. This in-depth investigation provides new insights into the design and modification of biodegradable (di)glycerol-based polyesters, potentially paving the way for more effective and sustainable PEG-free drug delivery nano-systems in the pharmaceutical and biomedical fields.


Asunto(s)
Nanopartículas , Poliésteres , Poliésteres/química , Glicerol/química , Polietilenglicoles/química , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Adipatos , Nanopartículas/química
8.
Polymers (Basel) ; 15(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37514459

RESUMEN

Polymersomes are an exciting modality for drug delivery due to their structural similarity to biological cells and their ability to encapsulate both hydrophilic and hydrophobic drugs. In this regard, the current work aimed to develop multifunctional polymersomes, integrating dye (with hydrophobic Nile red and hydrophilic sulfo-cyanine5-NHS ester as model drugs) encapsulation, stimulus responsiveness, and surface-ligand modifications. Polymersomes constituting poly(N-2-hydroxypropylmethacrylamide)-b-poly(N-(2-(methylthio)ethyl)acrylamide) (PHPMAm-b-PMTEAM) are prepared by aqueous dispersion RAFT-mediated polymerization-induced self-assembly (PISA). The hydrophilic block lengths have an effect on the obtained morphologies, with short chain P(HPMAm)16 affording spheres and long chain P(HPMAm)43 yielding vesicles. This further induces different responses to H2O2, with spheres fragmenting and vesicles aggregating. Folic acid (FA) is successfully conjugated to the P(HPMAm)43, which self-assembles into FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes. The FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes entrap both hydrophobic Nile red (NR) and hydrophilic Cy5 dye. The NR-loaded FA-linked polymersomes exhibit a controlled release of the encapsulated NR dye when exposed to 10 mM H2O2. All the polymersomes formed are stable in human plasma and well-tolerated in MCF-7 breast cancer cells. These preliminary results demonstrate that, with simple and scalable chemistry, PISA offers access to different shapes and opens up the possibility of the one-pot synthesis of multicompartmental and responsive polymersomes.

9.
Biomater Sci ; 11(19): 6545-6560, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37593851

RESUMEN

The therapeutic efficacy of nanomedicines is highly dependent on their access to target sites in the body, and this in turn is markedly affected by their size, shape and transport properties in tissue. Although there have been many studies in this area, the ability to design nanomaterials with optimal physicochemical properties for in vivo efficacy remains a significant challenge. In particular, it is often difficult to quantify the detailed effects of cancer drug delivery systems in vivo as tumour volume reduction, a commonly reported marker of efficacy, does not always correlate with cytotoxicity in tumour tissue. Here, we studied the behaviour in vivo of two specific poly(2-hydroxypropyl methacrylamide) (pHPMA) pro-drugs, with hyperbranched and chain-extended branched architectures, redox-responsive backbone components, and pH-sensitive linkers to the anti-cancer drug doxorubicin. Evaluation of the biodistribution of these polymers following systemic injection indicated differences in the circulation time and organ distribution of the two polymers, despite their very similar hydrodynamic radii (∼10 and 15 nm) and architectures. In addition, both polymers showed improved tumour accumulation in orthotopic triple-negative breast cancers in mice, and decreased accumulation in healthy tissue, as compared to free doxorubicin, even though neither polymer-doxorubicin pro-drug decreased overall tumour volume as much as the free drug under the dosing regimens selected. However, the results of histopathological examinations by haematoxylin and eosin, and TUNEL staining indicated a higher population of apoptotic cells in the tumours for both polymer pro-drug treatments, and in turn a lower population of apoptotic cells in the heart, liver and spleen, as compared to free doxorubicin treatment. These data suggest that the penetration of these polymer pro-drugs was enhanced in tumour tissue relative to free doxorubicin, and that the combination of size, architecture, bioresponsive backbone and drug linker degradation yielded greater efficacy for the polymers as measured by biomarkers than that of tumour volume. We suggest therefore that the effects of nanomedicines may be different at various length scales relative to small molecule free drugs, and that penetration into tumour tissue for some nanomedicines may not be as problematic as prior reports have suggested. Furthermore, the data indicate that dual-responsive crosslinked polymer-prodrugs in this study may be effective nanomedicines for breast cancer chemotherapy, and that endpoints beyond tumour volume reduction can be valuable in selecting candidates for pre-clinical trials.


Asunto(s)
Profármacos , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Polímeros/química , Distribución Tisular , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Doxorrubicina/química , Línea Celular Tumoral , Portadores de Fármacos/química
10.
Commun Biol ; 6(1): 463, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117487

RESUMEN

Biomechanical cues from the extracellular matrix (ECM) are essential for directing many cellular processes, from normal development and repair, to disease progression. To better understand cell-matrix interactions, we have developed a new instrument named 'OptoRheo' that combines light sheet fluorescence microscopy with particle tracking microrheology. OptoRheo lets us image cells in 3D as they proliferate over several days while simultaneously sensing the mechanical properties of the surrounding extracellular and pericellular matrix at a sub-cellular length scale. OptoRheo can be used in two operational modalities (with and without an optical trap) to extend the dynamic range of microrheology measurements. We corroborated this by characterising the ECM surrounding live breast cancer cells in two distinct culture systems, cell clusters in 3D hydrogels and spheroids in suspension culture. This cutting-edge instrument will transform the exploration of drug transport through complex cell culture matrices and optimise the design of the next-generation of disease models.


Asunto(s)
Matriz Extracelular , Hidrogeles , Microscopía Fluorescente , Comunicación Celular
11.
J Colloid Interface Sci ; 641: 1043-1057, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36996683

RESUMEN

Sustainably derived poly(glycerol adipate) (PGA) has been deemed to deliver all the desirable features expected in a polymeric scaffold for drug-delivery, including biodegradability, biocompatibility, self-assembly into nanoparticles (NPs) and a functionalisable pendant group. Despite showing these advantages over commercial alkyl polyesters, PGA suffers from a series of key drawbacks caused by poor amphiphilic balance. This leads to weak drug-polymer interactions and subsequent low drug-loading in NPs, as well as low NPs stability. To overcome this, in the present work, we applied a more significant variation of the polyester backbone while maintaining mild and sustainable polymerisation conditions. We have investigated the effect of the variation of both hydrophilic and hydrophobic segments upon physical properties and drug interactions as well as self-assembly and NPs stability. For the first time we have replaced glycerol with the more hydrophilic diglycerol, as well as adjusting the final amphiphilic balance of the polyester repetitive units by incorporating the more hydrophobic 1,6-n-hexanediol (Hex). The properties of the novel poly(diglycerol adipate) (PDGA) variants have been compared against known polyglycerol-based polyesters. Interestingly, while the bare PDGA showed improved water solubility and diminished self-assembling ability, the Hex variation demonstrated enhanced features as a nanocarrier. In this regard, PDGAHex NPs were tested for their stability in different environments and for their ability to encode enhanced drug loading. Moreover, the novel materials have shown good biocompatibility in both in vitro and in vivo (whole organism) experiments.


Asunto(s)
Glicerol , Nanopartículas , Sistemas de Liberación de Medicamentos , Poliésteres/química , Preparaciones Farmacéuticas , Adipatos/química , Nanopartículas/química , Portadores de Fármacos/química
12.
J Control Release ; 345: 734-743, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367276

RESUMEN

In the context of increased interest in permeability enhancement technologies to achieve mucosal delivery of drugs and biologics, we report our study on effects of the amphiphilic surfactant at cell membrane and cell population levels. Our results show that modulation in membrane order and fluidity initially occurs on insertion of individual surfactant molecules into the outer leaflet of membrane lipid bilayer; a process occurring at concentrations below surfactant's critical micellar concentration. The surfactant insertion, and consequent increase in membrane fluidity, are observed to be spatially heterogenous, i.e. manifested as 'patches' of increased membrane fluidity. At the cell population level, spatially heterogeneous activity of surfactant is also manifested, with certain cells displaying high permeability amongst a 'background' population. We propose that this heterogeneity is further manifested in a broad profile of intracellular and nuclear exposure levels to a model drug (doxorubicin) observed in cell population. The study points to heterogeneous nature of surfactant effects at cell membrane and cells in population levels.


Asunto(s)
Surfactantes Pulmonares , Tensoactivos , Membrana Celular/metabolismo , Excipientes , Humanos , Membrana Dobles de Lípidos/metabolismo , Micelas , Permeabilidad , Surfactantes Pulmonares/metabolismo , Tensoactivos/metabolismo
13.
Biomater Sci ; 10(9): 2328-2344, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35380131

RESUMEN

Hyperbranched polymers have many promising features for drug delivery, owing to their ease of synthesis, multiple functional group content, and potential for high drug loading with retention of solubility. Here we prepared hyperbranched N-(2-hydroxypropyl)methacrylamide (HPMA) polymers with a range of molar masses and particle sizes, and with attached dyes, radiolabel or the anticancer drug gemcitabine. Reversible addition-fragmentation chain transfer (RAFT) polymerisation enabled the synthesis of pHPMA polymers and a gemcitabine-comonomer functionalised pHPMA polymer pro-drug, with diameters of the polymer particles ranging from 7-40 nm. The non-drug loaded polymers were well-tolerated in cancer cell lines and macrophages, and were rapidly internalised in 2D cell culture and transported efficiently to the centre of dense pancreatic cancer 3D spheroids. The gemcitabine-loaded polymer pro-drug was found to be toxic both to 2D cultures of MIA PaCa-2 cells and also in reducing the volume of MIA PaCa-2 spheroids. The non-drug loaded polymers caused no short-term adverse effects in healthy mice following systemic injection, and derivatives of these polymers labelled with 89Zr-were tracked for their distribution in the organs of healthy and MIA PaCa-2 xenograft bearing Balb/c nude mice. Tumour accumulation, although variable across the samples, was highest in individual animals for the pHPMA polymer of ∼20 nm size, and accordingly a gemcitabine pHPMA polymer pro-drug of ∼18 nm diameter was evaluated for efficacy in the tumour-bearing animals. The efficacy of the pHPMA polymer pro-drug was very similar to that of free gemcitabine in terms of tumour growth retardation, and although there was a survival benefit after 70 days for the polymer pro-drug, there was no difference at day 80. These data suggest that while polymer pro-drugs of this type can be effective, better tumour targeting and enhanced in situ release remain as key obstacles to clinical translation even for relatively simple polymers such as pHPMA.


Asunto(s)
Neoplasias , Profármacos , Acrilamidas , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Polímeros
14.
Polym Chem ; 13(42): 6032-6045, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36353599

RESUMEN

N-Hydroxyethyl acrylamide was used as a functional initiator for the enzymatic ring-opening polymerisation of ε-caprolactone and δ-valerolactone. N-Hydroxyethyl acrylamide was found not to undergo self-reaction in the presence of Lipase B from Candida antarctica under the reaction conditions employed. By contrast, this is a major problem for 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate which both show significant transesterification issues leading to unwanted branching and cross-linking. Surprisingly, N-hydroxyethyl acrylamide did not react fully during enzymatic ring-opening polymerisation. Computational docking studies helped us understand that the initiated polymer chains have a higher affinity for the enzyme active site than the initiator alone, leading to polymer propagation proceeding at a faster rate than polymer initiation leading to incomplete initiator consumption. Hydroxyl end group fidelity was confirmed by organocatalytic chain extension with lactide. N-Hydroxyethyl acrylamide initiated polycaprolactones were free-radical copolymerised with PEGMA to produce a small set of amphiphilic copolymers. The amphiphilic polymers were shown to self-assemble into nanoparticles, and to display low cytotoxicity in 2D in vitro experiments. To increase the green credentials of the synthetic strategies, all reactions were carried out in 2-methyl tetrahydrofuran, a solvent derived from renewable resources and an alternative for the more traditionally used fossil-based solvents tetrahydrofuran, dichloromethane, and toluene.

15.
Pharmaceutics ; 13(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546301

RESUMEN

Glioblastoma (GBM) is the most common, malignant and aggressive brain tumour in adults. Despite the use of multimodal treatments, involving surgery, followed by concomitant radiotherapy and chemotherapy, the median survival for patients remains less than 15 months from diagnosis. Low penetration of drugs across the blood-brain barrier (BBB) is a dose-limiting factor for systemic GBM therapies, and as a result, post-surgical intracranial drug delivery strategies are being developed to ensure local delivery of drugs within the brain. Here we describe the effects of PEGylated poly(lactide)-poly(carbonate)-doxorubicin (DOX) nanoparticles (NPs) on the metabolic activity of primary cancer cell lines derived from adult patients following neurosurgical resection, and the commercially available GBM cell line, U87. The results showed that non-drug-loaded NPs were well tolerated at concentrations of up to 100 µg/mL while tumour cell-killing effects were observed for the DOX-NPs at the same concentrations. Further experiments evaluated the release of DOX from polymer-DOX conjugate NPs when incorporated in a thermosensitive in situ gelling poly(DL-lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA/PEG) matrix paste, in order to simulate the clinical setting of a locally injected formulation for GBM following surgical tumour resection. These assays demonstrated drug release from the polymer pro-drugs, when in PLGA/PEG matrices of two formulations, over clinically relevant time scales. These findings encourage future in vivo assessment of the potential capability of polymer-drug conjugate NPs to penetrate brain parenchyma efficaciously, when released from existing interstitial delivery systems.

16.
Int J Pharm ; 601: 120593, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33857587

RESUMEN

Laurate (C12)-sucrose esters are established intestinal epithelial permeation enhancers (PEs) with potential for use in oral delivery. Most studies have examined blends of ester rather than specific monoesters, with little variation on the sugar moiety. To investigate the influence of varying the sugar moiety on monoester performance, we compared three monoesters: C12-sucrose, C12-lactose, and C12-trehalose. The assays were: critical micellar concentration (CMC) in Krebs-Henseleit buffer, MTS and lactate dehydrogenase assays in Caco-2 cells, transepithelial electrical resistance (TEER) and apparent permeability coefficient (Papp) of [14C] mannitol across isolated rat intestinal mucosae, and tissue histology. For CMC, the rank order was C12-trehalose (0.21 mM) < C12-sucrose (0.34 mM) < C12-lactose (0.43 mM). Exposure to Caco-2 cells for 120 min produced TC50 values in the MTS assay from 0.1 to 0.4 mM. Each ester produced a concentration-dependent decrease in TEER across rat mucosae with 80% reduction seen with 8 mM in 5 min, but C12-trehalose was less potent. C12-sucrose and C12-lactose increased the Papp of [14C] mannitol across mucosae with similar potency and efficacy, whereas C12-trehalose was not as potent or efficacious, even though it still increased flux. In the presence of the three esters, gross intestinal histology was unaffected except at 8 mM for C12-sucrose and C12-lactose. In conclusion, the three esters enhanced permeability likely via tight junction modulation in rat intestinal tissue. C12-trehalose was not quite as efficacious, but neither did it damage tissue to the same extent. All three can be considered as potential PEs to be included in oral formulations.


Asunto(s)
Absorción Intestinal , Lauratos , Animales , Células CACO-2 , Disacáridos , Humanos , Mucosa Intestinal/metabolismo , Permeabilidad , Ratas , Ratas Wistar
17.
Adv Healthc Mater ; 9(22): e2000892, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33073536

RESUMEN

The size, shape, and underlying chemistries of drug delivery particles are key parameters which govern their ultimate performance in vivo. Responsive particles are desirable for triggered drug delivery, achievable through architecture change and biodegradation to control in vivo fate. Here, polymeric materials are synthesized with linear, hyperbranched, star, and micellar-like architectures based on 2-hydroxypropyl methacrylamide (HPMA), and the effects of 3D architecture and redox-responsive biodegradation on biological transport are investigated. Variations in "stealth" behavior between the materials are quantified in vitro and in vivo, whereby reduction-responsive hyperbranched polymers most successfully avoid accumulation within the liver, and none of the materials target the spleen or lungs. Functionalization of selected architectures with doxorubicin (DOX) demonstrates enhanced efficacy over the free drug in 2D and 3D in vitro models, and enhanced efficacy in vivo in a highly aggressive orthotopic breast cancer model when dosed over schedules accounting for the biodistribution of the carriers. These data show it is possible to direct materials of the same chemistries into different cellular and physiological regions via modulation of their 3D architectures, and thus the work overall provides valuable new insight into how nanoparticle architecture and programmed degradation can be tailored to elicit specific biological responses for drug delivery.


Asunto(s)
Polímeros , Neoplasias de la Mama Triple Negativas , Transporte Biológico , Doxorrubicina/farmacología , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos , Distribución Tisular , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
18.
ACS Macro Lett ; 9(3): 431-437, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35648548

RESUMEN

Poly(lactic-co-glycolic acid) (PLGA) is a versatile synthetic copolymer that is widely used in pharmaceutical applications. This is because it is well-tolerated in the body, and copolymers of varying physicochemical properties are readily available via ring-opening polymerization. However, native PLGA polymers are hard to track as drug delivery carriers when delivered to subcellular spaces, due to the absence of an easily accessible "handle" for fluorescent labeling. Here we show a one-step, scalable, solvent-free, synthetic route to fluorescent blue (2-aminoanthracene), green (5-aminofluorescein), and red (rhodamine-6G) PLGA, in which every polymer chain in the sample is fluorescently labeled. The utility of initiator-labeled PLGA was demonstrated through the preparation of nanoparticles, capable of therapeutic subcellular delivery to T-helper-precursor-1 (THP-1) macrophages, a model cell line for determining in vitro biocompatibility and particle uptake. Super resolution confocal fluorescence microscopy imaging showed that dye-initiated PLGA nanoparticles were internalized to punctate regions and retained bright fluorescence over at least 24 h. In comparison, PLGA nanoparticles with 5-aminofluorescein introduced by conventional nanoprecipitation/encapsulation showed diffuse and much lower fluorescence intensity in the same cells and over the same time periods. The utility of this approach for in vitro drug delivery experiments was demonstrated through the concurrent imaging of the fluorescent drug doxorubicin (λex = 480 nm, λem = 590 nm) with carrier 5-aminofluorescein PLGA, also in THP-1 cells, in which the intracellular locations of the drug and the polymer could be clearly visualized. Finally, the dye-labeled particles were evaluated in an in vivo model, via delivery to the nematode Caenorhabditis elegans, with bright fluorescence again apparent in the internal tract after 3 h. The results presented in this manuscript highlight the ease of synthesis of highly fluorescent PLGA, which could be used to augment tracking of future therapeutics and accelerate in vitro and in vivo characterization of delivery systems prior to clinical translation.

19.
Biomater Sci ; 8(5): 1329-1344, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31912808

RESUMEN

Combinations of conventional chemotherapeutics with unconventional anticancer agents such as reactive oxygen and nitrogen species may offer treatment benefits for cancer therapies. Here we report a novel polymeric platform combining the delivery of Doxorubicin (DOXO) with the light-regulated release of nitric oxide (NO). An amphiphilic block-copolymer (P1) was designed and synthesized as the drug carrier, with pendant amine groups to attach DOXO via a urea linkage and a NO photodonor (NOPD) activable by visible light. The two grafted-copolymers (P1-DOXO and P1-NOPD) self-assembled via solvent displacement methods into nanoparticles (NPs), containing both therapeutic components (NP1) and, for comparison, the individual NOPD (NP2) and DOXO (NP3). All the NPs were fully characterized in terms of physicochemical, photochemical and photophysical properties. These experiments demonstrated that integration of the NOPD within the polymeric scaffold enhanced the NO photoreleasing efficiency when compared with the free NOPD, and that the proximity to DOXO on the polymer chains did not significantly affect the enhanced photochemical performance. Internalization of the NPs into lung, intestine, and skin cancer cell lines was investigated after co-formulation with Cy5 fluorescent tagged polymers, and cytotoxicity of the NPs against the same panel of cell lines was assessed under dark and light conditions. The overall results demonstrate effective cell internalization of the NPs and a notable enhancement in killing activity of the dual-action therapeutic NP1 when compared with NP2, NP3 and the free DOXO, respectively. This suggests that the combination of DOXO with photoregulated NO release, achieved through the mixed formulation strategy of tailored polymer conjugate NPs, may open new treatment modalities based on the use of NO to improve cancer therapies.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Nanopartículas/química , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Polímeros/química , Antibióticos Antineoplásicos/síntesis química , Antibióticos Antineoplásicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/síntesis química , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Donantes de Óxido Nítrico/síntesis química , Donantes de Óxido Nítrico/química , Procesos Fotoquímicos , Relación Estructura-Actividad
20.
ACS Med Chem Lett ; 11(5): 657-663, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32435367

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor. Residual cells at the tumor margin are responsible for up to 85% of GBM recurrences after standard treatment. Despite this evidence, the identification of compounds active on this cell population is still an underexplored field. Herein, starting from the knowledge that kinases are implicated in GBM, we evaluated three in-house pyrazolo[3,4-d]pyrimidines active as Src, Fyn, and SGK1 kinase inhibitors against patient derived cell lines from either the invasive region or contrast-enhanced core of GBM. We identified our Src inhibitor, SI306, as a promising lead compound for eradicating invasive GBM cells. Furthermore, aiming at the development of a feasible oral treatment for GBM, we performed a formulation study using 2D inkjet printing to generate soluble polymer-drug dispersions. Overall, this study led to the identification of a set of polymer-formulated pyrazolo[3,4-d]pyrimidine kinase inhibitors as promising candidates for GBM preclinical efficacy studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA