Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Exp Biol ; 227(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38126722

RESUMEN

Birds use their visual systems for important tasks, such as foraging and predator detection, that require them to resolve an image. However, visual acuity (the ability to perceive spatial detail) varies by two orders of magnitude across birds. Prior studies indicate that eye size and aspects of a species' ecology may drive variation in acuity, but these studies have been restricted to small numbers of species. We used a literature review to gather data on acuity measured either behaviorally or anatomically for 94 species from 38 families. We then examined how acuity varies in relation to (1) eye size, (2) habitat spatial complexity, (3) habitat light level, (4) diet composition, (5) prey mobility and (6) foraging mode. A phylogenetically controlled model including all of the above factors as predictors indicated that eye size and foraging mode are significant predictors of acuity. Examining each ecological variable in turn revealed that acuity is higher in species whose diet comprises vertebrates or scavenged food and whose foraging modes require resolving prey from farther away. Additionally, species that live in spatially complex, vegetative habitats have lower acuity than expected for their eye sizes. Together, our results suggest that the need to detect important objects from far away - such as predators for species that live in open habitats, and food items for species that forage on vertebrate and scavenged prey - has likely been a key driver of higher acuity in some species, helping us to elucidate how visual capabilities may be adapted to an animal's visual needs.


Asunto(s)
Aves , Ecosistema , Humanos , Animales , Agudeza Visual , Dieta/veterinaria , Alimentos , Conducta Predatoria
2.
Nature ; 560(7718): 365-367, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069042

RESUMEN

In many contexts, animals assess each other using signals that vary continuously across individuals and, on average, reflect variation in the quality of the signaller1,2. It is often assumed that signal receivers perceive and respond continuously to continuous variation in the signal2. Alternatively, perception and response may be discontinuous3, owing to limitations in discrimination, categorization or both. Discrimination is the ability to tell two stimuli apart (for example, whether one can tell apart colours close to each other in hue). Categorization concerns whether stimuli are grouped based on similarities (for example, identifying colours with qualitative similarities in hue as similar even if they can be distinguished)4. Categorical perception is a mechanism by which perceptual systems categorize continuously varying stimuli, making specific predictions about discrimination relative to category boundaries. Here we show that female zebra finches (Taeniopygia guttata) categorically perceive a continuously variable assessment signal: the orange to red spectrum of male beak colour. Both predictions of categorical perception5 were supported: females (1) categorized colour stimuli that varied along a continuum and (2) showed increased discrimination between colours from opposite sides of a category boundary compared to equally different colours from within a category. To our knowledge, this is the first demonstration of categorical perception of signal-based colouration in a bird, with implications for understanding avian colour perception and signal evolution in general.


Asunto(s)
Percepción de Color/fisiología , Pinzones/fisiología , Animales , Pico/anatomía & histología , Carotenoides/análisis , Carotenoides/metabolismo , Color , Femenino , Pinzones/inmunología , Inmunidad Celular , Masculino , Preferencia en el Apareamiento Animal/fisiología , Estimulación Luminosa , Pigmentación/fisiología
3.
Ecol Lett ; 26(4): 575-585, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36786312

RESUMEN

During mate choice, receivers often assess the magnitude (duration, size, etc.) of signals that vary along a continuum and reflect variation in signaller quality. It is generally assumed that receivers assess this variation linearly, meaning each difference in signalling trait between signallers results in a commensurate change in receiver response. However, increasing evidence shows receivers can respond to signals non-linearly, for example through Weber's Law of proportional processing, where discrimination between stimuli is based on proportional, rather than absolute, differences in magnitude. We quantified mate preferences of female green swordtail fish, Xiphophorus hellerii, for pairs of males differing in body size. Preferences for larger males were better predicted by the proportional difference between males (proportional processing) than the absolute difference (linear processing). This demonstration of proportional processing of a visual signal implies that receiver perception may be an important mechanism selecting against the evolution of ever-larger signalling traits.


Asunto(s)
Ciprinodontiformes , Masculino , Animales , Femenino , Fenotipo
4.
Artículo en Inglés | MEDLINE | ID: mdl-37572152

RESUMEN

Eyes in low-light environments typically must balance sensitivity and spatial resolution. Vertebrate eyes with large "pixels" (e.g., retinal ganglion cells with inputs from many photoreceptors) will be sensitive but provide coarse vision. Small pixels can render finer detail, but each pixel will gather less light, and thus have poor signal relative-to-noise, leading to lower contrast sensitivity. This balance is particularly critical in oceanic species at mesopelagic depths (200-1000 m) because they experience low light and live in a medium that significantly attenuates contrast. Depending on the spatial frequency and inherent contrast of a pattern being viewed, the viewer's pupil size and temporal resolution, and the ambient light level and water clarity, a visual acuity exists that maximizes the distance at which the pattern can be discerned. We develop a model that predicts this acuity for common conditions in the open ocean, and compare it to visual acuity in marine teleost fishes and elasmobranchs found at various depths in productive and oligotrophic waters. Visual acuity in epipelagic and upper mesopelagic species aligned well with model predictions, but species at lower mesopelagic depths (> 600 m) had far higher measured acuities than predicted. This is consistent with the prediction that animals found at lower mesopelagic depths operate in a visual world consisting primarily of bioluminescent point sources, where high visual acuity helps localize targets of this kind. Overall, the results suggest that visual acuity in oceanic fish and elasmobranchs is under depth-dependent selection for detecting either extended patterns or point sources.


Asunto(s)
Elasmobranquios , Visión Ocular , Animales , Agudeza Visual , Células Fotorreceptoras , Peces/fisiología , Células Ganglionares de la Retina
5.
Am Nat ; 197(2): 190-202, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33523788

RESUMEN

AbstractSensory systems are predicted to be adapted to the perception of important stimuli, such as signals used in communication. Prior work has shown that female zebra finches perceive the carotenoid-based orange-red coloration of male beaks-a mate choice signal-categorically. Specifically, females exhibited an increased ability to discriminate between colors from opposite sides of a perceptual category boundary than equally different colors from the same side of the boundary. The Bengalese finch, an estrildid finch related to the zebra finch, is black, brown, and white, lacking carotenoid coloration. To explore the relationship between categorical color perception and signal use, we tested Bengalese finches using the same orange-red continuum as in zebra finches, and we also tested how both species discriminated among colors differing systematically in hue and brightness. Unlike in zebra finches, we found no evidence of categorical perception of an orange-red continuum in Bengalese finches. Instead, we found that the combination of chromatic distance (hue difference) and Michelson contrast (difference in brightness) strongly correlated with color discrimination ability on all tested color pairs in Bengalese finches. The pattern was different in zebra finches: this strong correlation held when discriminating between colors from different categories but not when discriminating between colors from within the same category. These experiments suggest that categorical perception is not a universal feature of avian-or even estrildid finch-vision. Our findings also provide further insights into the mechanism underlying categorical perception and are consistent with the hypothesis that categorical perception is adapted for signal perception.


Asunto(s)
Percepción de Color/fisiología , Color , Pinzones/fisiología , Animales , Pico , Carotenoides , Condicionamiento Operante , Discriminación en Psicología , Femenino
6.
Proc Biol Sci ; 288(1949): 20210396, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33878924

RESUMEN

Visual perception is, in part, a function of the ambient illumination spectrum. In aquatic environments, illumination depends upon the water's optical properties and depth, both of which can change due to anthropogenic impacts: turbidity is increasing in many aquatic habitats, and many species have shifted deeper in response to warming surface waters (known as bathymetric shifts). Although increasing turbidity and bathymetric shifts can result in similarly large changes to a species' optical environment, no studies have yet examined the impact of the latter on visually mediated interactions. Here, we examine a potential link between climate change and visual perception, with a focus on colour. We discuss (i) what is known about bathymetric shifts; (ii) how the impacts of bathymetric shifts on visual interactions may be distributed across species; (iii) which interactions might be affected; and (iv) the ways that animals have to respond to these changes. As warming continues and temperature fluctuations grow more extreme, many species may move into even deeper waters. There is thus a need for studies that examine how such shifts can affect an organism's visual world, interfere with behaviour, and impact fitness, population dynamics, and community structure.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Dinámica Poblacional
7.
Proc Biol Sci ; 288(1953): 20210326, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157874

RESUMEN

In host-parasite arms races, hosts can evolve signatures of identity to enhance the detection of parasite mimics. In theory, signatures are most effective when within-individual variation is low ('consistency'), and between-individual variation is high ('distinctiveness'). However, empirical support for positive covariation in signature consistency and distinctiveness across species is mixed. Here, we attempt to resolve this puzzle by partitioning distinctiveness according to how it is achieved: (i) greater variation within each trait, contributing to elevated 'absolute distinctiveness' or (ii) combining phenotypic traits in unpredictable combinations ('combinatorial distinctiveness'). We tested how consistency covaries with each type of distinctiveness by measuring variation in egg colour and pattern in two African bird families (Cisticolidae and Ploceidae) that experience mimetic brood parasitism. Contrary to predictions, parasitized species, but not unparasitized species, exhibited a negative relationship between consistency and combinatorial distinctiveness. Moreover, regardless of parasitism status, consistency was negatively correlated with absolute distinctiveness across species. Together, these results suggest that (i) selection from parasites acts on how traits combine rather than absolute variation in traits, (ii) consistency and distinctiveness are alternative rather than complementary elements of signatures and (iii) mechanistic constraints may explain the negative relationship between consistency and absolute distinctiveness across species.


Asunto(s)
Parásitos , Passeriformes , Animales , Interacciones Huésped-Parásitos , Humanos , Comportamiento de Nidificación , Óvulo , Fenotipo
8.
J Exp Biol ; 224(24)2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34787303

RESUMEN

Among fishes in the family Poeciliidae, signals such as colour patterns, ornaments and courtship displays play important roles in mate choice and male-male competition. Despite this, visual capabilities in poeciliids are understudied, in particular, visual acuity, the ability to resolve detail. We used three methods to quantify visual acuity in male and female green swordtails (Xiphophorus helleri), a species in which body size and the length of the male's extended caudal fin ('sword') serve as assessment signals during mate choice and agonistic encounters. Topographic distribution of retinal ganglion cells (RGCs) was similar in all individuals and was characterized by areas of high cell densities located centro-temporally and nasally, as well as a weak horizontal streak. Based on the peak density of RGCs in the centro-temporal area, anatomical acuity was estimated to be approximately 3 cycles per degree (cpd) in both sexes. However, a behavioural optomotor assay found significantly lower mean acuity in males (0.8 cpd) than females (3.0 cpd), which was not explained by differences in eye size between males and females. An additional behavioural assay, in which we trained individuals to discriminate striped gratings from grey stimuli of the same mean luminance, also showed lower acuity in males (1-2 cpd) than females (2-3 cpd). Thus, although retinal anatomy predicts identical acuity in males and females, two behavioural assays found higher acuity in females than males, a sexual dimorphism that is rare outside of invertebrates. Overall, our results have implications for understanding how poeciliids perceive visual signals during mate choice and agonistic encounters.


Asunto(s)
Ciprinodontiformes , Caracteres Sexuales , Animales , Ciprinodontiformes/anatomía & histología , Femenino , Humanos , Masculino , Retina/anatomía & histología , Células Ganglionares de la Retina , Agudeza Visual
9.
Proc Biol Sci ; 286(1903): 20190524, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31138066

RESUMEN

Although perception begins when a stimulus is transduced by a sensory neuron, numerous perceptual mechanisms can modify sensory information as it is processed by an animal's nervous system. One such mechanism is categorical perception, in which (1) continuously varying stimuli are labelled as belonging to a discrete number of categories and (2) there is enhanced discrimination between stimuli from different categories as compared with equally different stimuli from within the same category. We have shown previously that female zebra finches ( Taeniopygia guttata) categorically perceive colours along an orange-red continuum that aligns with the carotenoid-based coloration of male beaks, a trait that serves as an assessment signal in female mate choice. Here, we demonstrate that categorical perception occurs along a blue-green continuum as well, suggesting that categorical colour perception may be a general feature of zebra finch vision. Although we identified two categories in both the blue-green and the orange-red ranges, we also found that individuals could better differentiate colours from within the same category in the blue-green as compared with the orange-red range, indicative of less clear categorization in the blue-green range. We discuss reasons why categorical perception may vary across the visible spectrum, including the possibility that such differences are linked to the behavioural or ecological function of different colour ranges.


Asunto(s)
Percepción de Color , Pájaros Cantores/fisiología , Comunicación Animal , Animales , Color , Femenino , Estimulación Luminosa
10.
Biol Lett ; 15(9): 20190534, 2019 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-31530112

RESUMEN

In cleaning mutualisms, small cleaner organisms remove ectoparasites and dead skin from larger clients. Because cheating by predatory clients can result in cleaner death, cleaners should assess the potential risk of interacting with a given client and adjust their behaviour accordingly. Cleaner shrimp are small marine crustaceans that interact with numerous client fish species, many of which are potential predators. We use in situ observations of cleaner-client interactions to show that the cleaner shrimp Lysmata amboinensis adjusts several behaviours when interacting with predatory versus non-predatory clients. Predatory clients were cleaned in a significantly lower proportion of interactions than non-predatory clients, and cleaners also exhibited a leg rocking behaviour-potentially signalling their identity or intent to clean-almost exclusively toward predatory clients. Incidence of leg rocking was positively correlated with client size, and laboratory experiments showed that it can be elicited by dark visual stimuli and decreases in illumination level. Thus, cleaners clean less frequently when predation risk is higher, and may use leg rocking as a signal advertising cleaning services and directed specifically at predators.


Asunto(s)
Decápodos , Perciformes , Animales , Crustáceos , Peces , Conducta Predatoria , Simbiosis
11.
J Fish Biol ; 95(1): 179-185, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30393870

RESUMEN

Rod spectral sensitivity data (λmax ), measured by microspectrophotometry, were compiled for 403 species of ray-finned fishes in order to examine four hypothesized predictors of rod spectral sensitivity (depth, habitat, diet and temperature). From this database, a subset of species that were known to be adults and available on a published phylogeny (n = 210) were included in analysis, indicating rod λmax values averaging 503 nm and ranging from 477 to 541 nm. Linear models that corrected for phylogenetic relatedness showed that variation in rod sensitivity was best predicted by habitat and depth, with shorter wavelength λmax values occurring in fishes found offshore or in the deep sea. Neither diet, nor the interaction of diet and habitat, had significant explanatory power. Although temperature significantly correlated with rod sensitivity, in that fishes in temperate latitudes had longer wavelength rod λmax values than those in tropical latitudes, sampling inequity and other confounds require the role of the temperature to be studied further. Together, these findings indicate that fish rod λmax is influenced by several ecological factors, suggesting that selection can act on even small differences in fish spectral sensitivity.


Asunto(s)
Ecosistema , Peces/fisiología , Visión Ocular , Animales , Peces/clasificación , Microespectrofotometría , Filogenia , Temperatura
12.
Proc Biol Sci ; 285(1881)2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29925618

RESUMEN

Cleaner shrimp and their reef fish clients are an interspecific mutualistic interaction that is thought to be mediated by signals, and a useful system for studying the dynamics of interspecific signalling. To demonstrate signalling, one must show that purported signals at minimum (a) result in a consistent state change in the receiver and (b) contain reliable information about the sender's intrinsic state or future behaviour. Additionally, signals must be perceptible by receivers. Here, we document fundamental attributes of the signalling system between the cleaner shrimp Ancylomenes pedersoni and its clients. First, we use sequential analysis of in situ behavioural interactions to show that cleaner antenna whipping reliably predicts subsequent cleaning. If shrimp do not signal via antenna whipping, clients triple their likelihood of being cleaned by adopting darker coloration over a matter of seconds, consistent with dark colour change signalling that clients want cleaning. Using experimental manipulations, we found that visual stimuli are sufficient to elicit antenna whipping, and that shrimp are more likely to 'clean' dark than light visual stimuli. Lastly, we show that antenna whipping and colour change are perceptible when accounting for the intended receiver's visual acuity and spectral sensitivity, which differ markedly between cleaners and clients. Our results show that signalling by both cleaners and clients can initiate and mediate their mutualistic interaction.


Asunto(s)
Comunicación Animal , Peces/fisiología , Palaemonidae/fisiología , Simbiosis , Percepción Visual , Animales , Señales (Psicología) , Curazao , Estimulación Luminosa
13.
J Exp Biol ; 221(Pt 23)2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30322978

RESUMEN

A major goal of sensory ecology is to identify factors that underlie sensory-trait variation. One open question centers on why fishes show the greatest diversity among vertebrates in their capacity to detect color (i.e. spectral sensitivity). Over the past several decades, λmax values (photoreceptor class peak sensitivity) and chromacy (photoreceptor class number) have been cataloged for hundreds of fish species, yet the ecological basis of this diversity and the functional significance of high chromacy levels (e.g. tetra- and pentachromacy) remain unclear. In this study, we examined phylogenetic, physiological and ecological patterns of spectral sensitivity of ray-finned fishes (Actinoptergyii) via a meta-analysis of data compiled from 213 species. Across the fishes sampled, our results indicate that trichromacy is most common, ultraviolet λmax values are not found in monochromatic or dichromatic species, and increasing chromacy, including from tetra- to pentachromacy, significantly increases spectral sensitivity range. In an ecological analysis, multivariate phylogenetic latent liability modeling was performed to analyze correlations between chromacy and five hypothesized predictors (depth, habitat, diet, body coloration, body size). In a model not accounting for phylogenetic relatedness, each predictor with the exception of habitat significantly correlated with chromacy: a positive relationship in body color and negative relationships with body size, diet and depth. However, after phylogenetic correction, the only remaining correlated predictor was depth. The findings of this study indicate that phyletic heritage and depth are important factors in fish spectral sensitivity and impart caution about excluding phylogenetic comparative methods in studies of sensory trait variation.


Asunto(s)
Visión de Colores/fisiología , Ecosistema , Peces/clasificación , Peces/fisiología , Adaptación Biológica , Animales , Tamaño Corporal , Dieta , Filogenia
14.
Proc Biol Sci ; 284(1854)2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28515202

RESUMEN

When mimicry imposes costs on models, selection may drive the model's phenotype to evolve away from its mimic. For example, brood parasitism often drives hosts to diversify in egg appearance among females within a species, making mimetic parasitic eggs easier to detect. However, when a single parasite species exploits multiple host species, parasitism could also drive host egg evolution away from other co-occurring hosts, to escape susceptibility to their respective mimics. This hypothesis predicts that sympatric hosts of the same parasite should partition egg phenotypic space (defined by egg colour, luminance and pattern) among species to avoid one another. We show that eggs of warbler species parasitized by the cuckoo finch Anomalospiza imberbis in Zambia partition phenotypic space much more distinctly than do eggs of sympatric but unparasitized warblers. Correspondingly, cuckoo finch host-races better match their own specialist host than other local host species. In the weaver family, parasitized by the diederik cuckoo Chrysococcyx caprius, by contrast, parasitized species were more closely related and overlapped extensively in phenotypic space; correspondingly, cuckoos did not match their own host better than others. These results suggest that coevolutionary arms races between hosts and parasites may be shaped by the wider community context in which they unfold.


Asunto(s)
Coevolución Biológica , Comportamiento de Nidificación , Gorriones/fisiología , Animales , Femenino , Zambia
15.
J Exp Biol ; 220(Pt 9): 1586-1596, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28183870

RESUMEN

Visual acuity (the ability to resolve spatial detail) is highly variable across fishes. However, little is known about the evolutionary pressures underlying this variation. We reviewed published literature to create an acuity database for 159 species of ray-finned fishes (Actinopterygii). Within a subset of those species for which we had phylogenetic information and anatomically measured acuity data (n=81), we examined relationships between acuity and both morphological (eye size and body size) and ecological (light level, water turbidity, habitat spatial complexity and diet) variables. Acuity was significantly correlated with eye size (P<0.001); a weaker correlation with body size occurred via a correlation between eye and body size (P<0.001). Acuity decreased as light level decreased and turbidity increased; however, these decreases resulted from fishes in dark or murky environments having smaller eyes and bodies than those in bright or clear environments. We also found significantly lower acuity in horizon-dominated habitats than in featureless or complex habitats. Higher acuity in featureless habitats is likely due to species having absolutely larger eyes and bodies in that environment, though eye size relative to body size is not significantly different from that in complex environments. Controlling for relative eye size, we found that species in complex environments have even higher acuity than predicted. We found no relationship between visual acuity and diet. Our results show that eye size is a primary factor underlying variation in fish acuity. We additionally show that habitat type is an important ecological factor that correlates with acuity in certain species.


Asunto(s)
Ecosistema , Ojo/anatomía & histología , Peces/anatomía & histología , Peces/fisiología , Animales , Evolución Biológica , Tamaño Corporal , Peces/clasificación , Luz , Tamaño de los Órganos , Agudeza Visual
16.
J Exp Biol ; 219(Pt 4): 597-608, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26747903

RESUMEN

Cleaner shrimp (Decapoda) regularly interact with conspecifics and client reef fish, both of which appear colourful and finely patterned to human observers. However, whether cleaner shrimp can perceive the colour patterns of conspecifics and clients is unknown, because cleaner shrimp visual capabilities are unstudied. We quantified spectral sensitivity and temporal resolution using electroretinography (ERG), and spatial resolution using both morphological (inter-ommatidial angle) and behavioural (optomotor) methods in three cleaner shrimp species: Lysmata amboinensis, Ancylomenes pedersoni and Urocaridella antonbruunii. In all three species, we found strong evidence for only a single spectral sensitivity peak of (mean ± s.e.m.) 518 ± 5, 518 ± 2 and 533 ± 3 nm, respectively. Temporal resolution in dark-adapted eyes was 39 ± 1.3, 36 ± 0.6 and 34 ± 1.3 Hz. Spatial resolution was 9.9 ± 0.3, 8.3 ± 0.1 and 11 ± 0.5 deg, respectively, which is low compared with other compound eyes of similar size. Assuming monochromacy, we present approximations of cleaner shrimp perception of both conspecifics and clients, and show that cleaner shrimp visual capabilities are sufficient to detect the outlines of large stimuli, but not to detect the colour patterns of conspecifics or clients, even over short distances. Thus, conspecific viewers have probably not played a role in the evolution of cleaner shrimp appearance; rather, further studies should investigate whether cleaner shrimp colour patterns have evolved to be viewed by client reef fish, many of which possess tri- and tetra-chromatic colour vision and relatively high spatial acuity.


Asunto(s)
Palaemonidae/fisiología , Animales , Color , Visión de Colores , Electrorretinografía , Peces , Luz , Fenómenos Fisiológicos Oculares , Percepción Espacial/fisiología , Especificidad de la Especie , Agudeza Visual
17.
Proc Biol Sci ; 282(1810)2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26085586

RESUMEN

Hosts of brood-parasitic birds must distinguish their own eggs from parasitic mimics, or pay the cost of mistakenly raising a foreign chick. Egg discrimination is easier when different host females of the same species each lay visually distinctive eggs (egg 'signatures'), which helps to foil mimicry by parasites. Here, we ask whether brood parasitism is associated with lower levels of correlation between different egg traits in hosts, making individual host signatures more distinctive and informative. We used entropy as an index of the potential information content encoded by nine aspects of colour, pattern and luminance of eggs of different species in two African bird families (Cisticolidae parasitized by cuckoo finches Anomalospiza imberbis, and Ploceidae by diederik cuckoos Chrysococcyx caprius). Parasitized species showed consistently higher entropy in egg traits than did related, unparasitized species. Decomposing entropy into two variation components revealed that this was mainly driven by parasitized species having lower levels of correlation between different egg traits, rather than higher overall levels of variation in each individual egg trait. This suggests that irrespective of the constraints that might operate on individual egg traits, hosts can further improve their defensive 'signatures' by arranging suites of egg traits into unpredictable combinations.


Asunto(s)
Evolución Biológica , Aves/fisiología , Aves/parasitología , Óvulo/fisiología , Animales , Comportamiento de Nidificación , Fenotipo , Pájaros Cantores/parasitología , Pájaros Cantores/fisiología
18.
Trends Ecol Evol ; 39(2): 188-198, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37802667

RESUMEN

Color signals which mediate behavioral interactions across taxa and contexts are often thought of as color 'patches' - parts of an animal that appear colorful compared to other parts of that animal. Color patches, however, cannot be considered in isolation because how a color is perceived depends on its visual background. This is of special relevance to the function and evolution of signals because backgrounds give rise to a fundamental tradeoff between color signal detectability and discriminability: as its contrast with the background increases, a color patch becomes more detectable, but discriminating variation in that color becomes more difficult. Thus, the signal function of color patches can only be fully understood by considering patch and background together as an integrated whole.


Asunto(s)
Conducta Predatoria , Animales , Color
19.
Annu Rev Vis Sci ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768615

RESUMEN

Animals live in visually complex environments. As a result, visual systems have evolved mechanisms that simplify visual processing and allow animals to focus on the information that is most relevant to adaptive decision making. This review explores two key mechanisms that animals use to efficiently process visual information: categorization and specialization. Categorization occurs when an animal's perceptual system sorts continuously varying stimuli into a set of discrete categories. Specialization occurs when particular classes of stimuli are processed using distinct cognitive operations that are not used for other classes of stimuli. We also describe a nonadaptive consequence of simplifying heuristics: visual illusions, where visual perception consistently misleads the viewer about the state of the external world or objects within it. We take an explicitly comparative approach by exploring similarities and differences in visual cognition across human and nonhuman taxa. Considering areas of convergence and divergence across taxa provides insight into the evolution and function of visual systems and associated perceptual strategies.

20.
Curr Biol ; 33(19): R992-R993, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37816325

RESUMEN

Bullough et al. introduce Weber's Law and proportional processing during perception.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA