Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Biochem Biophys ; 569: 26-31, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25660043

RESUMEN

Studies in sarcolipin knockout mice have led to the suggestion that skeletal muscle sarcolipin plays a role in thermogenesis. The mechanism proposed is uncoupling of the sarcoplasmic reticulum calcium pump. However, in other work sarcolipin was not detected in mouse skeletal tissue. We have therefore measured sarcolipin levels in mouse skeletal muscle using semi-quantitative western blotting and synthetic mouse sarcolipin. Sarcolipin levels were so low that it is unlikely that knocking out sarcolipin would have a measurable effect on thermogenesis by SERCA. In addition, overexpression of neither wild type nor FLAG-tagged variants of mouse sarcolipin in transgenic mice had any major significant effects on body mass, energy expenditure, even when mice were fed on a high fat diet.


Asunto(s)
Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteolípidos/genética , Proteolípidos/metabolismo , Animales , Peso Corporal/genética , Peso Corporal/fisiología , Dieta Alta en Grasa , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Masculino , Ratones , Ratones Transgénicos , Oligopéptidos/genética , Oligopéptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Termogénesis/genética , Termogénesis/fisiología , Regulación hacia Arriba
2.
Br J Nutr ; 113(11): 1677-88, 2015 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-25916176

RESUMEN

Various foods are associated with effects against metabolic diseases such as insulin resistance and type 2 diabetes; however, their mechanisms of action are mostly unclear. Fatty acids may contribute by acting as precursors of signalling molecules or by direct activity on receptors. The medium- and long-chain NEFA receptor FFA1 (free fatty acid receptor 1, previously known as GPR40) has been linked to enhancement of glucose-stimulated insulin secretion, whereas FFA4 (free fatty acid receptor 4, previously known as GPR120) has been associated with insulin-sensitising and anti-inflammatory effects, and both receptors are reported to protect pancreatic islets and promote secretion of appetite and glucose-regulating hormones. Hypothesising that FFA1 and FFA4 mediate therapeutic effects of dietary components, we screened a broad selection of NEFA on FFA1 and FFA4 and characterised active compounds in concentration-response curves. Of the screened compounds, pinolenic acid, a constituent of pine nut oil, was identified as a relatively potent and efficacious dual FFA1/FFA4 agonist, and its suitability for further studies was confirmed by additional in vitro characterisation. Pine nut oil and free and esterified pure pinolenic acid were tested in an acute glucose tolerance test in mice. Pine nut oil showed a moderately but significantly improved glucose tolerance compared with maize oil. Pure pinolenic acid or ethyl ester gave robust and highly significant improvements of glucose tolerance. In conclusion, the present results indicate that pinolenic acid is a comparatively potent and efficacious dual FFA1/FFA4 agonist that exerts antidiabetic effects in an acute mouse model. The compound thus deserves attention as a potential active dietary ingredient to prevent or counteract metabolic diseases.


Asunto(s)
Grasas de la Dieta/farmacología , Ácidos Linolénicos/farmacología , Síndrome Metabólico/prevención & control , Receptores Acoplados a Proteínas G/genética , Animales , Diabetes Mellitus Tipo 2/prevención & control , Modelos Animales de Enfermedad , Prueba de Tolerancia a la Glucosa , Células HEK293 , Humanos , Insulina/sangre , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Nueces/química , Pinus , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
3.
BMC Bioinformatics ; 14: 260, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23971965

RESUMEN

BACKGROUND: Texture within biological specimens may reveal critical insights, while being very difficult to quantify. This is a particular problem in histological analysis. For example, cross-polar images of picrosirius stained skin reveal exquisite structure, allowing changes in the basketweave conformation of healthy collagen to be assessed. Existing techniques measure gross pathological changes, such as fibrosis, but are not sufficiently sensitive to detect more subtle and progressive pathological changes in the dermis, such as those seen in ageing. Moreover, screening methods for cutaneous therapeutics require accurate, unsupervised and high-throughput image analysis techniques. RESULTS: By analyzing spectra of images post Gabor filtering and Fast Fourier Transform, we were able to measure subtle changes in collagen fibre orientation intractable to existing techniques. We detected the progressive loss of collagen basketweave structure in a series of chronologically aged skin samples, as well as in skin derived from a model of type 2 diabetes mellitus. CONCLUSIONS: We describe a novel bioimaging approach with implications for the evaluation of pathology in a broader range of biological situations.


Asunto(s)
Colágeno/química , Diabetes Mellitus Experimental/patología , Animales , Colágeno/genética , Dermis/química , Dermis/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Análisis de Fourier , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microscopía de Polarización , Piel/química , Piel/patología , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/patología
4.
Br J Nutr ; 109(10): 1755-64, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23110765

RESUMEN

SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in ß-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.


Asunto(s)
Tejido Adiposo/metabolismo , Composición Corporal/genética , Grasas de la Dieta/farmacología , Metabolismo Energético/genética , Ácidos Grasos Volátiles/metabolismo , Obesidad/genética , Receptores Acoplados a Proteínas G/genética , Tejido Adiposo/efectos de los fármacos , Animales , Bacterias/metabolismo , Compartimentos de Líquidos Corporales/efectos de los fármacos , Compartimentos de Líquidos Corporales/metabolismo , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Grasas de la Dieta/metabolismo , Femenino , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Intolerancia a la Glucosa/genética , Corazón/efectos de los fármacos , Insulina/metabolismo , Secreción de Insulina , Leptina/metabolismo , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control , Tamaño de los Órganos , Receptores Acoplados a Proteínas G/metabolismo , Factores Sexuales
5.
Handb Exp Pharmacol ; (203): 35-51, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21484566

RESUMEN

The thiazolidinedione PPAR-γ activator drugs rosiglitazone and pioglitazone suppress insulin resistance in type 2 diabetic patients. They lock lipids into adipose tissue triglyceride stores, thereby preventing lipid metabolites from causing insulin resistance in liver and skeletal muscle and ß-cell failure. They also reduce the secretion of inflammatory cytokines such as TNFα and increase the plasma level of adiponectin, which increases insulin sensitivity in liver and skeletal muscle. However, they have only a modest effect on dyslipidaemia, and they increase fat mass and plasma volume. Fibrate PPAR-α activator drugs decrease plasma triglycerides and increase HDL-cholesterol levels. PPAR-δ activators increase the capacity for fat oxidation in skeletal muscle.Clinical experience with bezafibrate, which activates PPAR-δ and -α, and studies on the PPAR-α/δ activator tetradecylthioacetic acid, the PPAR-δ activator GW501516, and combinations of the PPAR-α activator fenofibrate with rosiglitazone or pioglitazone have encouraged attempts to develop single molecules that activate two or all three PPARs. Most effort has focussed on dual PPAR-α/γ activators. These reduce both hyperglycaemia and dyslipidaemia, but their development has been terminated by issues such as increased weight gain, oedema, plasma creatinine and myocardial infarction or stroke. In addition, the FDA has stated that many PPAR ligands submitted to it have caused increased numbers of tumours in carcinogenicity studies.Rather than aiming for full potent agonists, it may be best to identify subtype-selective partial agonists or compounds that selectively activate PPAR signalling pathways and use these in combination. Nutrients or modified lipids that are low-affinity agonists may also have potential.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Receptores Activados del Proliferador del Peroxisoma/agonistas , Quimioterapia Combinada , Humanos , Hipoglucemiantes/efectos adversos , Resistencia a la Insulina , Neoplasias/inducido químicamente , Neoplasias/epidemiología , PPAR alfa/fisiología , PPAR delta/fisiología , PPAR gamma/fisiología
6.
Trends Biotechnol ; 26(10): 545-51, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18706724

RESUMEN

Epidemiological evidence together with experimental models shows a direct relationship between fetal and early postnatal growth patterns and an increased risk of adult metabolic disease. Maternal health and nutrition are key determinants in influencing infant growth but the precise molecular mechanisms underlying this relationship are unclear, although it is evident that there are critical time windows when these effects are important. Animal models show mechanistic parallels with human populations and highlight that the early environment represents a therapeutic window for protection from obesity and metabolic disease. The observation that developmental programming can be reversed has been demonstrated in studies in which both maternal and neonatal leptin treatment prevents the induction of the adverse metabolic phenotype. Given that orally administered peptides are absorbed intact by the new born, the prospect of providing supplemental leptin either as drops or in milk deserves serious consideration as a means of reducing or reversing the obesity and type 2 diabetes epidemic.


Asunto(s)
Conducta Alimentaria/fisiología , Leptina/metabolismo , Obesidad/fisiopatología , Adulto , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Recién Nacido , Leptina/uso terapéutico , Síndrome Metabólico/fisiopatología , Obesidad/prevención & control , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Efectos Tardíos de la Exposición Prenatal/prevención & control
7.
Lipids Health Dis ; 6: 2, 2007 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-17239230

RESUMEN

BACKGROUND: Mice that lack acyl CoA:diacylglycerol acyltransferase (Dgat1-/- mice) are reported to have a reduced body fat content and improved glucose tolerance and insulin sensitivity. Studies so far have focussed on male null mice fed a high fat diet and there are few data on heterozygotes. We compared male and female Dgat1-/-, Dgat1+/- and Dgat1+/+ C57Bl/6 mice fed on either standard chow or a high fat diet. RESULTS: Body fat content was lower in the Dgat1-/- than the Dgat1+/+ mice in both experiments; lean body mass was higher in male Dgat1-/- than Dgat1+/+ mice fed on the high fat diet. Energy intake and expenditure were higher in male Dgat1-/- than Dgat1+/+ mice; these differences were less marked or absent in females. The body fat content of female Dgat1+/- mice was intermediate between that of Dgat1-/- and Dgat1+/+ mice, whereas male Dgat1+/- mice were similar to or fatter than Dgat1+/+ mice. Glucose tolerance was improved and plasma insulin reduced in Dgat1-/- mice fed on the high fat diet, but not on the chow diet. Both male and female Dgat1+/- mice had similar glucose tolerance to Dgat1+/+ mice. CONCLUSION: These results suggest that although ablation of DGAT1 improves glucose tolerance by preventing obesity in mice fed on a high fat diet, it does not improve glucose tolerance in mice fed on a low fat diet.


Asunto(s)
Glucemia/metabolismo , Diacilglicerol O-Acetiltransferasa/deficiencia , Dieta , Tejido Adiposo/anatomía & histología , Alimentación Animal , Animales , Peso Corporal , Ingestión de Energía , Femenino , Genotipo , Masculino , Ratones , Ratones Noqueados
8.
Arch Physiol Biochem ; 122(2): 75-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26822470

RESUMEN

OBJECTIVE: The potentially beneficial effects of pomegranate peel (PPE), flower (PFE) and seed oil (PSO) extracts, in comparison with rosiglitazone, on adiposity, lipid profile, glucose homoeostasis, as well as on the underlying inflammatory mechanisms, were examined in high-fat and high-sucrose (HF/HS) diet-induced obese (DIO) mice. MEASUREMENTS: Body weight, body fat, energy expenditure, food and liquid intake, blood glucose, and plasma levels of insulin, lipids and cytokines were measured. RESULTS: After two weeks, PSO (2 ml/kg/day) and rosiglitazone (3 mg/kg/day) had not improved glucose intolerance. After 4 weeks, both treatments significantly reduced fasting blood glucose and an insulin tolerance test showed that they also improved insulin sensitivity. Treatment with PPE, PFE and PSO, reduced the plasma levels of the pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α), and PFE increased the level of the anti-inflammatory cytokine interleukin-10 (IL-10). CONCLUSION: PPE, PFE and PSO have anti-inflammatory properties. PSO also improved insulin sensitivity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Flores/química , Resistencia a la Insulina , Lythraceae/química , Obesidad/tratamiento farmacológico , Aceites de Plantas/farmacología , Semillas/química , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Glucemia/metabolismo , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Citocinas/sangre , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Ácidos Grasos/análisis , Homeostasis/efectos de los fármacos , Inflamación/metabolismo , Inflamación/prevención & control , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Ratones , Obesidad/sangre , Obesidad/inducido químicamente , Obesidad/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Aceites de Plantas/uso terapéutico , Polifenoles/análisis , Sacarosa/efectos adversos , Triglicéridos/sangre , Triglicéridos/metabolismo
9.
Dis Model Mech ; 9(4): 401-12, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26769798

RESUMEN

Although obesity is a global epidemic, the physiological mechanisms involved are not well understood. Recent advances reveal that susceptibility to obesity can be programmed by maternal and neonatal nutrition. Specifically, a maternal low-protein diet during pregnancy causes decreased intrauterine growth, rapid postnatal catch-up growth and an increased risk for diet-induced obesity. Given that the synthesis of the neurotransmitter 5-hydroxytryptamine (5-HT) is nutritionally regulated and 5-HT is a trophic factor, we hypothesised that maternal diet influences fetal 5-HT exposure, which then influences development of the central appetite network and the subsequent efficacy of 5-HT to control energy balance in later life. Consistent with our hypothesis, pregnant rats fed a low-protein diet exhibited elevated serum levels of 5-HT, which was also evident in the placenta and fetal brains at embryonic day 16.5. This increase was associated with reduced levels of 5-HT2CR, the primary 5-HT receptor influencing appetite, in the fetal, neonatal and adult hypothalamus. As expected, a reduction of 5-HT2CR was associated with impaired sensitivity to 5-HT-mediated appetite suppression in adulthood. 5-HT primarily achieves effects on appetite by 5-HT2CR stimulation of pro-opiomelanocortin (POMC) peptides within the arcuate nucleus of the hypothalamus (ARC). We show that 5-HT2ARs are also anatomically positioned to influence the activity of ARC POMC neurons and that mRNA encoding 5-HT2AR is increased in the hypothalamus ofin uterogrowth-restricted offspring that underwent rapid postnatal catch-up growth. Furthermore, these animals at 3 months of age are more sensitive to appetite suppression induced by 5-HT2AR agonists. These findings not only reveal a 5-HT-mediated mechanism underlying the programming of susceptibility to obesity, but also provide a promising means to correct it, by treatment with a 5-HT2AR agonist.


Asunto(s)
Crecimiento y Desarrollo , Hipotálamo/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Animales Recién Nacidos , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Peso Corporal/efectos de los fármacos , Proteínas en la Dieta/farmacología , Conducta Alimentaria/efectos de los fármacos , Femenino , Fenfluramina/administración & dosificación , Fenfluramina/farmacología , Feto/efectos de los fármacos , Feto/metabolismo , Crecimiento y Desarrollo/efectos de los fármacos , Hipotálamo/anatomía & histología , Hipotálamo/efectos de los fármacos , Hipotálamo/crecimiento & desarrollo , Captura por Microdisección con Láser , Masculino , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Tamaño de los Órganos/efectos de los fármacos , Embarazo , Ratas Wistar , Reproducibilidad de los Resultados , Serotonina/metabolismo , Factores de Tiempo , Triptófano/metabolismo
10.
J Med Chem ; 59(6): 2841-6, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26928019

RESUMEN

The free fatty acid receptor 1 (FFA1 or GPR40) is established as an interesting potential target for treatment of type 2 diabetes. However, to obtain optimal ligands, it may be necessary to limit both lipophilicity and polar surface area, translating to a need for small compounds. We here describe the identification of 24, a potent FFA1 agonist with low lipophilicity and very high ligand efficiency that exhibit robust glucose lowering effect.


Asunto(s)
Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Fenilpropionatos/síntesis química , Fenilpropionatos/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Descubrimiento de Drogas , Prueba de Tolerancia a la Glucosa , Ligandos , Lípidos/química , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Relación Estructura-Actividad
11.
Lipids Health Dis ; 4: 3, 2005 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-15642120

RESUMEN

BACKGROUND: Studies in rodents and some studies in humans have shown that conjugated linoleic acid (CLA), especially its trans-10, cis-12 isomer, reduces body fat content. However, some but not all studies in mice and humans (though none in rats) have found that CLA promotes insulin resistance. The molecular mechanisms responsible for these effects are unclear, and there are conflicting reports on the effects of CLA on peroxisomal proliferator-activated receptor-gamma (PPARgamma) activation and expression. We have conducted three experiments with CLA in obese mice over three weeks, and one over eleven weeks. We have also investigated the effects of CLA isomers in PPARgamma and PPARalpha reporter gene assays. RESULTS: Inclusion of CLA or CLA enriched with its trans-10, cis-12 isomer in the diet of female genetically obese (lepob/lepob) mice for up to eleven weeks reduced body weight gain and white fat pad weight. After two weeks, in contrast to beneficial effects obtained with the PPARgamma agonist rosiglitazone, CLA or CLA enriched with its trans-10, cis-12 isomer raised fasting blood glucose and plasma insulin concentrations, and exacerbated glucose tolerance. After 10 weeks, however, CLA had beneficial effects on glucose and insulin concentrations. At this time, CLA had no effect on the plasma TNFalpha concentration, but it markedly reduced the plasma adiponectin concentration. CLA and CLA enriched with either isomer raised the plasma triglyceride concentration during the first three weeks, but not subsequently. CLA enriched with its trans-10, cis-12 isomer, but not with its cis-9, trans-11 isomer, stimulated PPARgamma-mediated reporter gene activity; both isomers stimulated PPARalpha-mediated reporter gene activity. CONCLUSIONS: CLA initially decreased but subsequently increased insulin sensitivity in lepob/lepob mice. Activation of both PPARgamma and PPARalpha may contribute to the improvement in insulin sensitivity. In the short term, however, another mechanism, activated primarily by trans-10, cis-12-CLA, which probably leads to reduced adipocyte number and consequently reduced plasma adiponectin concentration, may decrease insulin sensitivity.


Asunto(s)
Glucemia/metabolismo , Insulina/sangre , Ácidos Linoleicos Conjugados/farmacología , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Adiponectina/sangre , Animales , Biometría , Peso Corporal/efectos de los fármacos , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Ácidos Linoleicos Conjugados/farmacocinética , Ratones , Ratones Endogámicos C57BL , Ratones Obesos/anatomía & histología , Receptores Activados del Proliferador del Peroxisoma/genética , Factores de Tiempo , Triglicéridos/sangre , Factor de Necrosis Tumoral alfa/metabolismo
12.
PeerJ ; 3: e753, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25699203

RESUMEN

The literature is unclear on whether the adipokine chemerin has pro- or anti-inflammatory properties or plays any role in the aetiology of type 2 diabetes or obesity. To address these questions, and in particular the potential of agonists or antagonists of the chemerin receptor CMKLR1 in the treatment of type 2 diabetes and obesity, we studied the metabolic phenotypes of both male and female, CMKLR1 knockout and heterozygote mice. We also investigated changes in plasma chemerin levels and chemerin gene mRNA content in adipose tissue in models of obesity and diabetes, and in response to fasting or administration of the insulin sensitizing drug rosiglitazone, which also has anti-inflammatory properties. The effects of murine chemerin and specific C-terminal peptides on glucose uptake in wild-type and CMKLR1 knockout adipocytes were investigated as a possible mechanism by which chemerin affects the blood glucose concentration. Both male and female CMKLR1 knockout and heterozygote mice displayed a mild tendency to obesity and impaired glucose homeostasis, but only when they were fed on a high-fat died, rather than a standard low-fat diet. Obesity and impaired glucose homeostasis did not occur concurrently, suggesting that obesity was not the sole cause of impaired glucose homeostasis. Picomolar concentrations of chemerin and its C15- and C19-terminal peptides stimulated glucose uptake in the presence of insulin by rat and mouse wild-type epididymal adipocytes, but not by murine CMKLR1 knockout adipocytes. The insulin concentration-response curve was shifted to the left in the presence of 40 pM chemerin or its C-15 terminal peptide. The plasma chemerin level was raised in diet-induced obesity and ob/ob but not db/db mice, and was reduced by fasting and, in ob/ob mice, by treatment with rosiglitazone. These findings suggest that an agonist of CMKLR1 is more likely than an antagonist to be of value in the treatment of type 2 diabetes and to have associated anti-obesity and anti-inflammatory activities. One mechanism by which an agonist of CMKLR1 might improve glucose homeostasis is by increasing insulin-stimulated glucose uptake by adipocytes.

13.
Ann N Y Acad Sci ; 967: 112-9, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12079841

RESUMEN

Diabetic patients exhibit varying degrees of increased muscle UCP-3 expression in skeletal muscle and, in rodents, the pancreatoxin streptozotocin (STZ) upregulates UCP-3 mRNA in skeletal and cardiac muscles. We have investigated the development of STZ-induced diabetes in transgenic mice overexpressing UCP-3 in skeletal muscle in order to provide further insight on the functional role of muscle UCP-3. UCP-3 transgenic mice treated with STZ (UCP3-STZ) showed a significant increase in blood glucose concentration 3 days after the last dose of STZ with a progressive induction of diabetes, attaining blood glucose concentrations of 24.7 +/- 1.5 mmol/L on day 17. Wild-type mice treated with STZ (WT-STZ) only started to show an increase in blood glucose concentration 6 days after the last dose of STZ and peaked on day 17 at a lower concentration than in the UCP-STZ mice. The pancreatic insulin content of UCP-3 control mice (UCP3-CON) was decreased relative to wild-type control mice (WT-CON), and STZ reduced the total pancreatic insulin content by 72% in WT-STZ mice and by 88% in UCP3-STZ mice. In an insulin tolerance test, blood glucose concentrations declined more in the UCP-3 transgenic mice than in the wild-type mice. Mice overexpressing UCP-3 in skeletal muscle have a lower pancreatic insulin content, but tend to be more insulin-sensitive. These twin actions result in an increased susceptibility to STZ-induced diabetes in UCP-3 transgenic mice.


Asunto(s)
Proteínas Portadoras/metabolismo , Diabetes Mellitus Experimental/metabolismo , Estreptozocina/farmacología , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Insulina/metabolismo , Canales Iónicos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Proteínas Mitocondriales , Páncreas/metabolismo , Proteína Desacopladora 3
14.
Regul Pept ; 104(1-3): 153-9, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11830290

RESUMEN

A single dose of the orexin-1 (OX1) receptor antagonist 1-(2-methylbenzoxazol-6-yl)-3-[1,5] naphthyridin-4-yl urea hydrochloride (SB-334867-A) reduces orexin-A-induced feeding and natural feeding in Sprague Dawley rats. In this study, the anti-obesity effects of SB-334867-A were determined in genetically obese (ob/ob) mice dosed with SB-334867-A (30 mg/kg, i.p.) once daily for 7 days, and then twice daily for a further 7 days. SB-334867-A reduced cumulative food intake and body weight gain over 14 days. Total fat mass gain, determined by Dual Emission X-ray Absorptiometry, was reduced, while gain in fat-free mass was unchanged. Fasting (5 h) blood glucose was also reduced at the end of the study, with a trend to reduced plasma insulin. Interscapular brown adipose tissue (BAT) weight was reduced, the tissue was noticeably darker in colour and quantitative PCR (TaqMan) analysis of this tissue showed a trend to an increase in uncoupling protein-1 mRNA expression, suggesting that SB-334867-A might stimulate thermogenesis. This was confirmed in a separate study in which a single dose of SB-334867-A (30 mg/kg, i.p.) increased metabolic rate over 4 h in ob/ob mice. OX1 receptor mRNA was detected in BAT, and its expression was increased by 58% by treatment with SB-334867-A. This is the first demonstration that OX1 receptor antagonists have potential as both anti-obesity and anti-diabetic agents.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Benzoxazoles/farmacología , Obesidad/fisiopatología , Receptores de Neuropéptido/antagonistas & inhibidores , Urea/farmacología , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Femenino , Insulina/sangre , Ratones , Ratones Endogámicos , Naftiridinas , Obesidad/sangre , Obesidad/genética , Receptores de Orexina , ARN Mensajero/biosíntesis , ARN Mensajero/efectos de los fármacos , Receptores Acoplados a Proteínas G , Receptores de Neuropéptido/biosíntesis , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Urea/análogos & derivados
15.
PeerJ ; 2: e614, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25320682

RESUMEN

Kv1 channels are shaker-related potassium channels that influence insulin sensitivity. Kv1.3(-/-) mice are protected from diet-induced insulin resistance and some studies suggest that Kv1.3 inhibitors provide similar protection. However, it is unclear whether blockade of Kv1.3 in adipocytes or skeletal muscle increases glucose uptake. There is no evidence that the related channel Kv1.5 has any influence on insulin sensitivity and its expression in adipose tissue has not been reported. PAP-1 is a selective inhibitor of Kv1.3, with 23-fold, 32-fold and 125-fold lower potencies as an inhibitor of Kv1.5, Kv1.1 and Kv1.2 respectively. Soleus muscles from wild-type and genetically obese ob/ob mice were incubated with 2-deoxy[1-(14)C]-glucose for 45 min and formation of 2-deoxy[1-(14)C]-glucose-6-phosphate was measured. White adipocytes were incubated with D-[U-(14)C]-glucose for 1 h. TNFα and Il-6 secretion from white adipose tissue pieces were measured by enzyme-linked-immunoassay. In the absence of insulin, a high concentration (3 µM) of PAP-1 stimulated 2-deoxy[1-14C]-glucose uptake in soleus muscle of wild-type and obese mice by 30% and 40% respectively, and in adipocytes by 20% and 50% respectively. PAP-1 also stimulated glucose uptake by adipocytes at the lower concentration of 1 µM, but at 300 nM, which is still 150-fold higher than its EC50 value for inhibition of the Kv1.3 channel, it had no effect. In the presence of insulin, PAP-1 (3 µM) had a significant effect only in adipocytes from obese mice. PAP-1 (3 µM) reduced the secretion of TNFα by adipose tissue but had no effect on the secretion of IL-6. Expression of Kv1.1, Kv1.2, Kv1.3 and Kv1.5 was determined by RT-PCR. Kv1.3 and Kv1.5 mRNA were detected in liver, gastrocnemius muscle, soleus muscle and white adipose tissue from wild-type and ob/ob mice, except that Kv1.3 could not be detected in gastrocnemius muscle, nor Kv1.5 in liver, of wild-type mice. Expression of both genes was generally higher in liver and muscle of ob/ob mice compared to wild-type mice. Kv1.5 appeared to be expressed more highly than Kv1.3 in soleus muscle, adipose tissue and adipocytes of wild-type mice. Expression of Kv1.2 appeared to be similar to that of Kv1.3 in soleus muscle and adipose tissue, but Kv1.2 was undetectable in adipocytes. Kv1.1 could not be detected in soleus muscle, adipose tissue or adipocytes. We conclude that inhibition of Kv1 channels by PAP-1 stimulates glucose uptake by adipocytes and soleus muscle of wild-type and ob/ob mice, and reduces the secretion of TNFα by adipose tissue. However, these effects are more likely due to inhibition of Kv1.5 than to inhibition of Kv1.3 channels.

16.
Naunyn Schmiedebergs Arch Pharmacol ; 386(9): 761-73, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23564017

RESUMEN

The ß-adrenoceptor agonists BRL37344 and clenbuterol have opposite effects on glucose uptake in mouse soleus muscle, even though the ß2-adrenoceptor mediates both effects. Different agonists may direct the soleus muscle ß2-adrenoceptor to different signalling mechanisms. Soleus muscles were incubated with 2-deoxy[1-(14)C]-glucose, ß-adrenoceptor agonists, other modulators of cyclic AMP, and inhibitors of intracellular signalling. The adenylyl cyclase activator forskolin (1 µM), the phosphodiesterase inhibitor rolipram (10 µM) and BRL37344 (10, but not 100 or 1,000, nM) increased, whereas clenbuterol (100 nM) decreased, glucose uptake. Forskolin increased, whereas clenbuterol decreased, muscle cyclic AMP content. BRL37344 (10 nM) did not increase cyclic AMP. Nevertheless, protein kinase A (PKA) inhibitors prevented the stimulatory effect of BRL37344. Nanomolar but not micromolar concentrations of adrenaline stimulated glucose uptake. After preincubation of muscles with pertussis toxin (100 ng/ml), 100 nM clenbuterol, 0.1-10 µM adrenaline and 100 nM BRL37344 stimulated glucose uptake. Clenbuterol increased the proportion of phosphorylated to total ß2-adrenoceptor. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and the stress-activated mitogen-activated protein kinase (MAPK), but not of the classical MAPK pathway, prevented stimulation of glucose uptake by BRL37344. Elevation of the cyclic AMP content of soleus muscle stimulates glucose uptake. Clenbuterol, and high concentrations of adrenaline and BRL37344 direct the ß2-adrenoceptor partly to Gαi, possibly mediated by ß2-adrenoceptor phosphorylation. The stimulatory effect of 10 nM BRL37344 requires the activity of PKA, PI3K and p38 MAPK, consistent with BRL37344 directing the ß2-adrenoceptor to Gαs. Ligand-directed signalling may explain why ß2-adrenoceptor agonists have differing effects on glucose uptake in soleus muscle.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Clenbuterol/farmacología , Etanolaminas/farmacología , Glucosa/metabolismo , Músculo Esquelético/efectos de los fármacos , Animales , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Epinefrina/farmacología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Adipocyte ; 2(3): 160-4, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23991362

RESUMEN

Increased adipocyte size and number are associated with many of the adverse effects observed in metabolic disease states. While methods to quantify such changes in the adipocyte are of scientific and clinical interest, manual methods to determine adipocyte size are both laborious and intractable to large scale investigations. Moreover, existing computational methods are not fully automated. We, therefore, developed a novel automatic method to provide accurate measurements of the cross-sectional area of adipocytes in histological sections, allowing rapid high-throughput quantification of fat cell size and number. Photomicrographs of H&E-stained paraffin sections of murine gonadal adipose were transformed using standard image processing/analysis algorithms to reduce background and enhance edge-detection. This allowed the isolation of individual adipocytes from which their area could be calculated. Performance was compared with manual measurements made from the same images, in which adipocyte area was calculated from estimates of the major and minor axes of individual adipocytes. Both methods identified an increase in mean adipocyte size in a murine model of obesity, with good concordance, although the calculation used to identify cell area from manual measurements was found to consistently over-estimate cell size. Here we report an accurate method to determine adipocyte area in histological sections that provides a considerable time saving over manual methods.

18.
J Endocrinol ; 216(2): 157-68, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23151357

RESUMEN

Previous studies by Tisdale et al. have reported that zinc-α(2)-glycoprotein (ZAG (AZGP1)) reduces body fat content and improves glucose homeostasis and the plasma lipid profile in Aston (ob/ob) mice. It has been suggested that this might be mediated via agonism of ß(3)- and possibly ß(2)-adrenoceptors. We compared the effects of dosing recombinant human ZAG (100 µg, i.v.) and BRL35135 (0.5 mg/kg, i.p.), which is in rodents a 20-fold selective ß(3)- relative to ß(2)-adrenoceptor agonist, given once daily for 10 days to male C57Bl/6 Lep(ob)/Lep(ob) mice. ZAG, but not BRL35135, reduced food intake. BRL35135, but not ZAG, increased energy expenditure acutely and after sub-chronic administration. Only BRL35135 increased plasma concentrations of glycerol and non-esterified fatty acid. Sub-chronic treatment with both ZAG and BRL35135 reduced fasting blood glucose and improved glucose tolerance, but the plasma insulin concentration 30 min after administration of glucose was lowered only by BRL35135. Both ZAG and BRL35135 reduced ß(1)-adrenoceptor mRNA levels in white adipose tissue, but only BRL35135 reduced ß(2)-adrenoceptor mRNA. Both ZAG and BRL35135 reduced ß(1)-adrenoceptor mRNA levels in brown adipose tissue, but neither influenced ß(2)-adrenoceptor mRNA, and only BRL35135 increased ß(3)-adrenoceptor and uncoupling protein-1 (UCP1) mRNA levels in brown adipose tissue. Thus, ZAG and BRL35135 had similar effects on glycaemic control and shared some effects on ß-adrenoceptor gene expression in adipose tissue, but ZAG did not display the thermogenic effects of the ß-adrenoceptor agonist, nor did it increase ß(3)-adrenoceptor or UCP1 gene expression in brown adipose tissue. ZAG does not behave as a typical ß(3/2)-adrenoceptor agonist.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Fenetilaminas/farmacología , Proteínas de Plasma Seminal/farmacología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Lipólisis/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1 , Zn-alfa-2-Glicoproteína
19.
Cell Metab ; 17(4): 520-33, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23562076

RESUMEN

Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet(-/-) mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet(-/-) mice also lacking adaptive immunity (T-bet(-/-)xRag2(-/-)), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4(+) T cells to Rag2(-/-) mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance.


Asunto(s)
Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Proteínas de Dominio T Box/metabolismo , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dieta Alta en Grasa , Metabolismo Energético , Sistema Inmunológico/metabolismo , Técnicas In Vitro , Interferón gamma/deficiencia , Interferón gamma/genética , Interferón gamma/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología , Fenotipo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
20.
ACS Med Chem Lett ; 4(5): 441-445, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23687558

RESUMEN

Free fatty acid receptor 1 (FFA1 or GPR40) enhances glucose-stimulated insulin secretion from pancreatic ß-cells and currently attracts high interest as a new target for the treatment of type 2 diabetes. We here report the discovery of a highly potent FFA1 agonist with favorable physicochemical and pharmacokinetic properties. The compound efficiently normalizes glucose tolerance in diet-induced obese mice, an effect that is fully sustained after 29 days of chronic dosing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA