RESUMEN
The dynamics of the focusing of laser-driven ion beams produced from concave solid targets was studied. Most of the ion beam energy is observed to converge at the center of the cylindrical targets with a spot diameter of 30 µm, which can be very beneficial for applications requiring high beam energy densities. Also, unbalanced laser irradiation does not compromise the focusability of the beam. However, significant filamentation occurs during the focusing, potentially limiting the localization of the energy deposition region by these beams at focus. These effects could impact the applicability of such high-energy density beams for applications, e.g., in proton-driven fast ignition.
RESUMEN
The dynamics of magnetic fields with an amplitude of several tens of megagauss, generated at both sides of a solid target irradiated with a high-intensity (~10(19) W/cm(2)) picosecond laser pulse, has been spatially and temporally resolved using a proton imaging technique. The amplitude of the magnetic fields is sufficiently large to have a constraining effect on the radial expansion of the plasma sheath at the target surfaces. These results, supported by numerical simulations and simple analytical modeling, may have implications for ion acceleration driven by the plasma sheath at the rear side of the target as well as for the laboratory study of self-collimated high-energy plasma jets.
RESUMEN
The onset of filamentation, following the interaction of a relatively long (τ(L)≃1 ns) and intense (I(L)≃5×10(14) W/cm(2)) laser pulse with a neopentane filled gas bag target, has been experimentally studied via the proton radiography technique, in conditions of direct relevance to the indirect drive inertial confinement fusion scheme. The density gradients associated with filamentation onset have been spatially resolved yielding direct and unambiguous evidence of filament formation and quantitative information about the filamentation mechanism in agreement with previous theoretical modelings. Experimental data confirm that, once spatially smoothed laser beams are used, filamentation is not a relevant phenomenon during the heating laser beams propagation through typical hohlraum gas fills.
RESUMEN
Slowly evolving, regularly spaced patterns have been observed in proton projection images of plasma channels drilled by intense (â³10¹9 W cm⻲) short (â¼1 ps) laser pulses propagating in an ionized gas jet. The nature and geometry of the electromagnetic fields generating such patterns have been inferred by simulating the laser-plasma interaction and the following plasma evolution with a two-dimensional particle-in-cell code and the probe proton deflections by particle tracing. The analysis suggests the formation of rows of magnetized soliton remnants, with a quasistatic magnetic field associated with vortexlike electron currents resembling those of magnetic vortices.
RESUMEN
The experimental arrangement for the investigation of high-field laser-induced processes using a broadband proton probe beam has been modified to enable the detection of the ultrafast motion of field fronts. It is typical in such experiments for the target to be oriented perpendicularly with respect to the principal axis of the probe beam. It is demonstrated here, however, that the temporal imaging properties of the diagnostic arrangement are altered drastically by placing the axis (or plane) of the target at an oblique angle to the transverse plane of the probe beam. In particular, the detection of the motion of a laser-driven field front along a wire at a velocity of (0.95+/-0.05)c is described.
RESUMEN
The interaction of a 3x10;{19} W/cm;{2} laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude approximately 10;{4} A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.
RESUMEN
The characteristics of fast electrons laser accelerated from solids and expanding into a vacuum from the rear target surface have been measured via optical probe reflectometry. This allows access to the time- and space-resolved dynamics of the fast electron density and temperature and of the energy partition into bulk (cold) electrons. In particular, it is found that the density of the hot electrons on the target rear surface is bell shaped, and that their mean energy at the same location is radially homogeneous and decreases with the target thickness.
RESUMEN
Proton beams laser accelerated from thin foils are studied for various plasma gradients on the foil rear surface. The beam maximum energy and spectral slope reduce with the gradient scale length, in good agreement with numerical simulations. The results also show that the jxB mechanism determines the temperature of the electrons driving the ion expansion. Future ion-driven fast ignition of fusion targets will use multikilojoule petawatt laser pulses, the leading part of which will induce target preheat. Estimates based on the data show that this modifies by less than 10% the ion beam parameters.