Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 145(10)2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29678816

RESUMEN

The extracellular matrix is essential for various aspects of nervous system patterning. For example, sensory dendrites in flies, worms and fish have been shown to rely on coordinated interactions of tissues with extracellular matrix proteins. Here we show that the conserved basement membrane protein UNC-52/Perlecan is required for establishing the correct number of the highly ordered dendritic trees in the somatosensory neuron PVD in Caenorhabditis elegans This function is dependent on four specific immunoglobulin domains, but independent of the known functions of UNC-52 in mediating muscle-skin attachment. Intriguingly, the four conserved immunoglobulin domains in UNC-52 are necessary to correctly localize the basement membrane protein NID-1/Nidogen. Genetic experiments further show that unc-52, nid-1 and genes of the netrin axon guidance signaling cassette share a common pathway to establish the correct number of somatosensory dendrites. Our studies suggest that, in addition to its role in mediating muscle-skin attachment, UNC-52 functions through immunoglobulin domains to establish an ordered lattice of basement membrane proteins, which may control the function of morphogens during dendrite patterning.


Asunto(s)
Orientación del Axón/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Dendritas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Sistema Nervioso/embriología , Proteoglicanos/metabolismo , Animales , Orientación del Axón/genética , Proteínas de Caenorhabditis elegans/genética , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Netrinas/genética , Netrinas/metabolismo , Dominios Proteicos/genética , Proteoglicanos/genética , Interferencia de ARN , ARN Interferente Pequeño/genética
2.
PLoS Genet ; 13(1): e1006579, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28114319

RESUMEN

Neurons receive excitatory or sensory inputs through their dendrites, which often branch extensively to form unique neuron-specific structures. How neurons regulate the formation of their particular arbor is only partially understood. In genetic screens using the multidendritic arbor of PVD somatosensory neurons in the nematode Caenorhabditis elegans, we identified a mutation in the ER stress sensor IRE-1/Ire1 (inositol requiring enzyme 1) as crucial for proper PVD dendrite arborization in vivo. We further found that regulation of dendrite growth in cultured rat hippocampal neurons depends on Ire1 function, showing an evolutionarily conserved role for IRE-1/Ire1 in dendrite patterning. PVD neurons of nematodes lacking ire-1 display reduced arbor complexity, whereas mutations in genes encoding other ER stress sensors displayed normal PVD dendrites, specifying IRE-1 as a selective ER stress sensor that is essential for PVD dendrite morphogenesis. Although structure function analyses indicated that IRE-1's nuclease activity is necessary for its role in dendrite morphogenesis, mutations in xbp-1, the best-known target of non-canonical splicing by IRE-1/Ire1, do not exhibit PVD phenotypes. We further determined that secretion and distal localization to dendrites of the DMA-1/leucine rich transmembrane receptor (DMA-1/LRR-TM) is defective in ire-1 but not xbp-1 mutants, suggesting a block in the secretory pathway. Interestingly, reducing Insulin/IGF1 signaling can bypass the secretory block and restore normal targeting of DMA-1, and consequently normal PVD arborization even in the complete absence of functional IRE-1. This bypass of ire-1 requires the DAF-16/FOXO transcription factor. In sum, our work identifies a conserved role for ire-1 in neuronal branching, which is independent of xbp-1, and suggests that arborization defects associated with neuronal pathologies may be overcome by reducing Insulin/IGF signaling and improving ER homeostasis and function.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Dendritas/metabolismo , Insulina/metabolismo , Neurogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Somatomedina/metabolismo , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratas
3.
Dev Cell ; 48(2): 229-244.e4, 2019 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-30661986

RESUMEN

The mechanisms that pattern and maintain dendritic arbors are key to understanding the principles that govern nervous system assembly. The activity of presynaptic axons has long been known to shape dendrites, but activity-independent functions of axons in this process have remained elusive. Here, we show that in Caenorhabditis elegans, the axons of the ALA neuron control guidance and extension of the 1° dendrites of PVD somatosensory neurons independently of ALA activity. PVD 1° dendrites mimic ALA axon guidance defects in loss-of-function mutants for the extracellular matrix molecule MIG-6/Papilin or the UNC-6/Netrin pathway, suggesting that axon-dendrite adhesion is important for dendrite formation. We found that the SAX-7/L1CAM cell adhesion molecule engages in distinct molecular mechanisms to mediate extensions of PVD 1° dendrites and maintain the ALA-PVD axon-dendritic fascicle, respectively. Thus, axons can serve as critical scaffolds to pattern and maintain dendrites through contact-dependent but activity-independent mechanisms.


Asunto(s)
Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Dendritas/metabolismo , Plasticidad Neuronal/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA