Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 506(7488): 343-8, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24522535

RESUMEN

Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

2.
Phys Rev Lett ; 123(16): 165001, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702328

RESUMEN

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data.

3.
Phys Rev Lett ; 115(10): 105001, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26382681

RESUMEN

Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

4.
Phys Rev Lett ; 114(14): 145004, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910132

RESUMEN

Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 µm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

5.
Phys Rev Lett ; 114(17): 175001, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25978240

RESUMEN

Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α∼3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8×10(15) neutrons, with 20% calculated alpha heating at convergence ∼27×.

6.
Phys Rev Lett ; 112(2): 025002, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24484021

RESUMEN

We present the first results from an experimental campaign to measure the atomic ablator-gas mix in the deceleration phase of gas-filled capsule implosions on the National Ignition Facility. Plastic capsules containing CD layers were filled with tritium gas; as the reactants are initially separated, DT fusion yield provides a direct measure of the atomic mix of ablator into the hot spot gas. Capsules were imploded with x rays generated in hohlraums with peak radiation temperatures of ∼294 eV. While the TT fusion reaction probes conditions in the central part (core) of the implosion hot spot, the DT reaction probes a mixed region on the outer part of the hot spot near the ablator-hot-spot interface. Experimental data were used to develop and validate the atomic-mix model used in two-dimensional simulations.

7.
Phys Rev Lett ; 111(5): 052501, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23952390

RESUMEN

Neutron time-of-flight spectra from inertial confinement fusion experiments with tritium-filled targets have been measured at the National Ignition Facility. These spectra represent a significant improvement in energy resolution and statistics over previous measurements, and afford the first definitive observation of a peak resulting from sequential decay through the ground state of (5)He at low reaction energies E(c.m.) 100

8.
Phys Rev Lett ; 111(8): 085004, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010449

RESUMEN

Deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility have demonstrated yields ranging from 0.8 to 7×10(14), and record fuel areal densities of 0.7 to 1.3 g/cm2. These implosions use hohlraums irradiated with shaped laser pulses of 1.5-1.9 MJ energy. The laser peak power and duration at peak power were varied, as were the capsule ablator dopant concentrations and shell thicknesses. We quantify the level of hydrodynamic instability mix of the ablator into the hot spot from the measured elevated absolute x-ray emission of the hot spot. We observe that DT neutron yield and ion temperature decrease abruptly as the hot spot mix mass increases above several hundred ng. The comparison with radiation-hydrodynamic modeling indicates that low mode asymmetries and increased ablator surface perturbations may be responsible for the current performance.

9.
Phys Rev Lett ; 111(4): 045001, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23931375

RESUMEN

Mixing of plastic ablator material, doped with Cu and Ge dopants, deep into the hot spot of ignition-scale inertial confinement fusion implosions by hydrodynamic instabilities is diagnosed with x-ray spectroscopy on the National Ignition Facility. The amount of hot-spot mix mass is determined from the absolute brightness of the emergent Cu and Ge K-shell emission. The Cu and Ge dopants placed at different radial locations in the plastic ablator show the ablation-front hydrodynamic instability is primarily responsible for hot-spot mix. Low neutron yields and hot-spot mix mass between 34(-13,+50) ng and 4000(-2970,+17 160) ng are observed.

10.
Phys Rev Lett ; 111(21): 215001, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24313493

RESUMEN

Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm2, representing a significant step from previously measured ~1.0 g/cm2 toward a goal of 1.5 g/cm2. Future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

11.
Phys Rev Lett ; 108(21): 215005, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003274

RESUMEN

The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 µm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).

12.
Appl Radiat Isot ; 143: 163-175, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30447627

RESUMEN

Nuclear fusion experiments performed at the National Ignition Facility produce radioactive debris, arising in reactions of fast neutrons with the target assembly. We have found that postshot debris collections are fractionated, such that isotope ratios in an individual debris sample may not be representative of the radionuclide inventory produced by the experiment. We discuss the potential sources of this fractionation and apply isotope-correlation techniques to calculate unfractionated isotope ratios that are used in measurements of nuclear reaction cross sections.

13.
Phys Rev E ; 98(2-1): 023203, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30253622

RESUMEN

Asymmetric implosion of inertial confinement fusion capsules is known, both experimentally and computationally, to reduce thermonuclear performance. This work shows that low-mode asymmetries degrade performance as a result of a decrease in the hydrodynamic disassembly time of the hot-spot core, which scales with the minimum dimension of the hot spot. The asymmetric shape of a hot spot results in decreased temperatures and areal densities and allows more alpha particles to escape, relative to an ideal spherical implosion, thus reducing alpha-energy deposition in the hot spot. Here, we extend previous ignition theory to include the hot-spot shape and quantify the effects of implosion asymmetry on both the ignition criterion and the capsule performance. The ignition criterion becomes more stringent with increasing deformation of the hot spot. The new theoretical results are validated by comparison with existing experimental data obtained at the National Ignition Facility. The shape effects on thermonuclear performance are relatively more noticeable for capsules having self-heating and high yields. The degradation of thermonuclear burn can be as high as 45% for shots with a yield lower than 2×10^{15} and less than 30% for shots with a higher yield.

14.
Rev Sci Instrum ; 87(11): 11D841, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910423

RESUMEN

A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a parameterized model of the observation. The model includes a description of the underlying physical process as well as the instrument response function (IRF). In the case investigated here, the National Ignition Facility (NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. IRF measurements have a finite precision that can make significant contributions to determine the uncertainty estimate of the physical model's parameters. We apply a Bayesian analysis to properly account for IRF uncertainties in calculating the ln-likelihood function used to find the optimum physical parameters.

15.
Rev Sci Instrum ; 87(11): 11D806, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910467

RESUMEN

The next-generation magnetic recoil spectrometer for time-resolved measurements of the neutron spectrum has been conceptually designed for the National Ignition Facility. This spectrometer, called MRSt, represents a paradigm shift in our thinking about neutron spectrometry for inertial confinement fusion applications, as it will provide simultaneously information about the burn history and time evolution of areal density (ρR), apparent ion temperature (Ti), yield (Yn), and macroscopic flows during burn. From this type of data, an assessment of the evolution of the fuel assembly, hotspot, and alpha heating can be made. According to simulations, the MRSt will provide accurate data with a time resolution of ∼20 ps and energy resolution of ∼100 keV for total neutron yields above ∼1016. At lower yields, the diagnostic will be operated at a higher-efficiency, lower-energy-resolution mode to provide a time resolution of ∼20 ps.

16.
Phys Rev E ; 94(2-1): 021202, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27627237

RESUMEN

An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T_{ion} are observed and the difference is seen to increase with increasing apparent DT T_{ion}. The line-of-sight rms variations of both DD and DT T_{ion} are small, ∼150eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T_{ion}. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T_{ion} greater than the DD T_{ion}, but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.

17.
Rev Sci Instrum ; 86(7): 076105, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26233419

RESUMEN

A new radiochemical method for determining deuterium-tritium (DT) fuel and plastic ablator (CH) areal densities (ρR) in high-convergence, cryogenic inertial confinement fusion implosions at the National Ignition Facility is described. It is based on measuring the (198)Au/(196)Au activation ratio using the collected post-shot debris of the Au hohlraum. The Au ratio combined with the independently measured neutron down scatter ratio uniquely determines the areal densities ρR(DT) and ρR(CH) during burn in the context of a simple 1-dimensional capsule model. The results show larger than expected ρR(CH) values, hinting at the presence of cold fuel-ablator mix.

18.
J Histochem Cytochem ; 42(2): 273-6, 1994 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8288868

RESUMEN

We used in situ hybridization to specifically identify mitochondria in a series of formalin-fixed, paraffin-embedded oncocytic lesions. Digoxigenin-labeled DNA probes were generated by the polymerase chain reaction (PCR), with primers designed to amplify a mitochondrion-specific 154 BP sequence within the ND4 coding region. Probes were hybridized with mitochondrial DNA under stringent conditions. Oncocytes were strongly and consistently stained, reflecting the high copy number of mitochondrial DNA within these cells. Because of the presence of endogenous biotin within mitochondria, digoxigenin is preferable to biotin as a label for detection of mitochondria.


Asunto(s)
Mitocondrias/ultraestructura , Neoplasias/ultraestructura , Secuencia de Bases , Transformación Celular Neoplásica/patología , Sondas de ADN , ADN Mitocondrial/ultraestructura , Humanos , Técnicas para Inmunoenzimas , Hibridación in Situ/métodos , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Tiroiditis Autoinmune/patología
19.
Rev Sci Instrum ; 85(6): 063508, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24985820

RESUMEN

We describe a radiochemical measurement of the ratio of isotope concentrations produced in a gold hohlraum surrounding an Inertial Confinement Fusion capsule at the National Ignition Facility (NIF). We relate the ratio of the concentrations of (n,γ) and (n,2n) products in the gold hohlraum matrix to the down-scatter of neutrons in the compressed fuel and, consequently, to the fuel's areal density. The observed ratio of the concentrations of (198m+g)Au and (196g)Au is a performance signature of ablator areal density and the fuel assembly confinement time. We identify the measurement of nuclear cross sections of astrophysical importance as a potential application of the neutrons generated at the NIF.

20.
Rev Sci Instrum ; 83(10): 10D307, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23126834

RESUMEN

We report recent progress in the development of RadOptic detectors, radiation to optical converters, that rely upon x-ray absorption induced modulation of the optical refractive index of a semiconductor sensor medium to amplitude modulate an optical probe beam. The sensor temporal response is determined by the dynamics of the electron-hole pair creation and subsequent relaxation in the sensor medium. Response times of a few ps have been demonstrated in a series of experiments conducted at the LLNL Jupiter Laser Facility (JLF). This technology will enable x-ray bang-time and fusion burn-history measurements with ∼ ps resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA