RESUMEN
An expedient, practical, and enantioselective route to the highly congested ent-kaurane diterpene maoecrystal V is presented. This route, which has been several years in the making, is loosely modeled after a key pinacol shift in the proposed biosynthesis. Only 11 steps, many of which are strategic in that they build key skeletal bonds and incorporate critical functionalities, are required to access (-)-maoecrystal V. Several unique and unexpected maneuvers are featured in this potentially scalable pathway. Reevaluation of the biological activity calls into question the initial exuberance surrounding this natural product.
Asunto(s)
Diterpenos/síntesis química , Biomimética , Técnicas de Química Sintética , Diterpenos/química , Modelos Moleculares , Conformación Molecular , EstereoisomerismoRESUMEN
A cascade reaction that generates pyrrolo- and pyridoindoline motifs from isocyanide precursors under phase-transfer conditions is described. This transformation proceeds at room temperature in the presence of a quaternary ammonium catalyst and base to generate functionalized products containing an all-carbon quaternary stereocentre. Quantum chemical calculations demonstrated that intramolecular general acid catalysis plays a key accelerating role through stabilization of developing charge in the transition state, and that the reaction is best described as a 5-endo dig cyclization, rather than an anionic 6π electrocyclization. Investigations employing chiral phase-transfer catalysts have given promising selectivities to date.
Asunto(s)
Cianuros/química , Indoles/síntesis química , Piridinas/síntesis química , Pirroles/síntesis química , Catálisis , Ciclización , Enlace de Hidrógeno , Indoles/química , Modelos Moleculares , Transición de Fase , Piridinas/química , Pirroles/química , Teoría Cuántica , EstereoisomerismoRESUMEN
Malignant tumors can evade destruction by the immune system by attracting immune-suppressive regulatory T cells (Treg) cells. The IKZF2 (Helios) transcription factor plays a crucial role in maintaining function and stability of Treg cells, and IKZF2 deficiency reduces tumor growth in mice. Here we report the discovery of NVP-DKY709, a selective molecular glue degrader of IKZF2 that spares IKZF1/3. We describe the recruitment-guided medicinal chemistry campaign leading to NVP-DKY709 that redirected the degradation selectivity of cereblon (CRBN) binders from IKZF1 toward IKZF2. Selectivity of NVP-DKY709 for IKZF2 was rationalized by analyzing the DDB1:CRBN:NVP-DKY709:IKZF2(ZF2 or ZF2-3) ternary complex X-ray structures. Exposure to NVP-DKY709 reduced the suppressive activity of human Treg cells and rescued cytokine production in exhausted T-effector cells. In vivo, treatment with NVP-DKY709 delayed tumor growth in mice with a humanized immune system and enhanced immunization responses in cynomolgus monkeys. NVP-DKY709 is being investigated in the clinic as an immune-enhancing agent for cancer immunotherapy.