Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 12(1): 6839, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477957

RESUMEN

Mammals are able to adapt to high altitude (HA) if appropriate acclimation occurs. However, specific occupations (professional climbers, pilots, astronauts and other) can be exposed to HA without acclimation and be at a higher risk of brain consequences. In particular, US Air Force U2-pilots have been shown to develop white matter hyperintensities (WMH) on MRI. Whether WMH are due to hypoxia or hypobaria effects is not understood. We compared swine brains exposed to 5000 feet (1524 m) above sea level (SL) with 21% fraction inspired O2 (FiO2) (Control group [C]; n = 5) vs. 30,000 feet (9144 m) above SL with 100% FiO2 group (hypobaric group [HYPOBAR]; n = 6). We performed neuropathologic assessments, molecular analyses, immunohistochemistry (IHC), Western Blotting (WB), and stereology analyses to detect differences between HYPOBAR vs. Controls. Increased neuronal insoluble hyperphosphorylated-Tau (pTau) accumulation was observed across different brain regions, at histological level, in the HYPOBAR vs. Controls. Stereology-based cell counting demonstrated a significant difference (p < 0.01) in pTau positive neurons between HYPOBAR and C in the Hippocampus. Higher levels of soluble pTau in the Hippocampus of HYPOBAR vs. Controls were also detected by WB analyses. Additionally, WB demonstrated an increase of IBA-1 in the Cerebellum and a decrease of myelin basic protein (MBP) in the Hippocampus and Cerebellum of HYPOBAR vs. Controls. These findings illustrate, for the first time, changes occurring in large mammalian brains after exposure to nonhypoxic-hypobaria and open new pathophysiological views on the interaction among hypobaria, pTau accumulation, neuroinflammation, and myelination in large mammals exposed to HA.


Asunto(s)
Altitud , Enfermedades Neuroinflamatorias , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética , Mamíferos , Vaina de Mielina , Porcinos
2.
Cell Rep ; 37(3): 109839, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34624208

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provide an exciting avenue toward antiviral therapeutics. From patient transcriptomic data, we determined that a circulating miRNA, miR-2392, is directly involved with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia, as well as promoting many symptoms associated with coronavirus disease 2019 (COVID-19) infection. We demonstrate that miR-2392 is present in the blood and urine of patients positive for COVID-19 but is not present in patients negative for COVID-19. These findings indicate the potential for developing a minimally invasive COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we design a miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters, and may potentially inhibit a COVID-19 disease state in humans.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , MicroARNs/genética , SARS-CoV-2/genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antivirales/farmacología , Biomarcadores/metabolismo , Cricetinae , Femenino , Hurones , Regulación de la Expresión Génica , Glucólisis , Voluntarios Sanos , Humanos , Hipoxia , Inflamación , Masculino , Ratones , Persona de Mediana Edad , Proteómica/métodos , Curva ROC , Ratas , Tratamiento Farmacológico de COVID-19
3.
bioRxiv ; 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-33948587

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene regulation that have a major impact on many diseases and provides an exciting avenue towards antiviral therapeutics. From patient transcriptomic data, we have discovered a circulating miRNA, miR-2392, that is directly involved with SARS-CoV-2 machinery during host infection. Specifically, we show that miR-2392 is key in driving downstream suppression of mitochondrial gene expression, increasing inflammation, glycolysis, and hypoxia as well as promoting many symptoms associated with COVID-19 infection. We demonstrate miR-2392 is present in the blood and urine of COVID-19 positive patients, but not detected in COVID-19 negative patients. These findings indicate the potential for developing a novel, minimally invasive, COVID-19 detection method. Lastly, using in vitro human and in vivo hamster models, we have developed a novel miRNA-based antiviral therapeutic that targets miR-2392, significantly reduces SARS-CoV-2 viability in hamsters and may potentially inhibit a COVID-19 disease state in humans.

4.
Brain Res ; 1678: 322-329, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29108817

RESUMEN

A single acute low-dose methylene blue (MB), an FDA-grandfathered drug, has been shown to ameliorate behavioral deficits and reduces MRI-defined infarct volume in experimental ischemic stroke when administered intravenously or intraperitoneally. The efficacy of chronic MB treatment in ischemic stroke remains unknown. In a randomized, double-blinded and vehicle-controlled design, we investigated the efficacy of chronic oral MB administration in ischemic stroke longitudinally up to 60 days post injury using MRI and behavioral tests, with end-point histology. The major findings were chronic oral MB treatment, compared to vehicle, i) improves functional behavioral outcomes starting on day 7 and up to 60 days, ii) reduces MRI-defined total lesion volumes from day 14 and up to 60 days where some initial abnormal MRI-defined core and perfusion-diffusion mismatch were salvaged, iii) reduces white-matter damage, iv) gray matter and white matter damages are consistent with Nissl stains and Black Gold stain histology. These findings provide further evidence that long-term oral administration of low-dose MB is safe and has positive therapeutic effects in chronic ischemic stroke.


Asunto(s)
Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Azul de Metileno/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Administración Oral , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Método Doble Ciego , Procesamiento de Imagen Asistido por Computador , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Infarto de la Arteria Cerebral Media/fisiopatología , Imagen por Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley , Reperfusión , Filtrado Sensorial/efectos de los fármacos , Filtrado Sensorial/fisiología , Tinción con Nitrato de Plata , Marcadores de Spin
5.
J Cereb Blood Flow Metab ; 37(8): 2706-2715, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27742887

RESUMEN

Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (Kw) across the blood-brain barrier in humans. This study aimed to evaluate the blood-brain barrier disruption in transient (60 min) ischemic stroke using Kw magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group Kw magnetic resonance imaging data showed no significant blood-brain barrier permeability changes, although a few animals showed slightly abnormal Kw. Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, Kw magnetic resonance imaging revealed significant blood-brain barrier disruption. Regions with abnormal Kw showed substantial overlap with regions of hyperintense T2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The Kw values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min-1, respectively (P < 0.05, n = 9). Kw magnetic resonance imaging is sensitive to blood-brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. Kw magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.


Asunto(s)
Barrera Hematoencefálica , Permeabilidad Capilar/fisiología , Imagen de Difusión por Resonancia Magnética/métodos , Ataque Isquémico Transitorio , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/fisiopatología , Medios de Contraste , Modelos Animales de Enfermedad , Azul de Evans , Ataque Isquémico Transitorio/diagnóstico por imagen , Ataque Isquémico Transitorio/fisiopatología , Masculino , Perfusión , Ratas Sprague-Dawley , Marcadores de Spin
6.
Stem Cell Res Ther ; 8(1): 74, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28330501

RESUMEN

BACKGROUND: Human umbilical cord blood (hUCB) cell therapy is a promising treatment for ischemic stroke. The effects of hyperacute stem cell transplantation on cerebrovascular function in ischemic stroke are, however, not well understood. This study evaluated the effects of hyperacute intraarterial transplantation of hUCB mononuclear cells (MNCs) on cerebrovascular function in stroke rats using serial magnetic resonance imaging (MRI). METHODS: HUCB MNCs or vehicle were administered to stroke rats via the internal carotid artery immediately after reperfusion at 60 min following ischemia onset. Lesion volumes were longitudinally evaluated by MRI on days 0, 2, 14, and 28 after stroke, accompanied by behavioral tests. Cerebral blood flow (CBF) and cerebrovascular reactivity were measured by perfusion MRI and CO2 functional MRI (fMRI) at 28 days post-stroke; corresponding vascular morphological changes were also detected by immunohistology in the same animals. RESULTS: We found that CBF to the stroke-affected region at 28 days was improved (normalized CBF value: 1.41 ± 0.30 versus 0.49 ± 0.07) by intraarterial transplantation of hUCB MNCs in the hyperacute stroke phase, compared to vehicle control. Cerebrovascular reactivity within the stroke-affected area, measured by CBF fMRI, was also increased (35.2 ± 3.5% versus 12.8 ± 4.3%), as well as the corresponding cerebrovascular density. Some engrafted cells appeared with microvascular-like morphology and stained positive for von Willebrand Factor (an endothelial cell marker), suggesting they differentiated into endothelial cells. Some engrafted cells also connected to host endothelial cells, suggesting they interacted with the host vasculature. Compared to the vehicle group, infarct volume at 28 days in the stem cell treated group was significantly smaller (160.9 ± 15.7 versus 231.2 ± 16.0 mm3); behavioral deficits were also markedly reduced by stem cell treatment at day 28 (19.5 ± 1.0% versus 30.7 ± 4.7% on the foot fault test; 68.2 ± 4.6% versus 86.6 ± 5.8% on the cylinder test). More tissue within initial perfusion-diffusion mismatch was rescued in the treatment group. CONCLUSIONS: Intraarterial hUCB MNC transplantation during the hyperacute phase of ischemic stroke improved cerebrovascular function and reduced behavioral deficits and infarct volume.


Asunto(s)
Isquemia Encefálica/terapia , Células Endoteliales/citología , Sangre Fetal/citología , Leucocitos Mononucleares/trasplante , Accidente Cerebrovascular/terapia , Animales , Biomarcadores/metabolismo , Velocidad del Flujo Sanguíneo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Arteria Carótida Interna , Diferenciación Celular , Separación Celular , Circulación Cerebrovascular , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Sangre Fetal/metabolismo , Expresión Génica , Humanos , Inyecciones Intraarteriales , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Masculino , Equilibrio Postural/fisiología , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Trasplante Heterólogo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA