Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 81(8): 1698-1714.e6, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33626321

RESUMEN

The DREAM complex orchestrates cell quiescence and the cell cycle. However, how the DREAM complex is deregulated in cancer remains elusive. Here, we report that PAF (PCLAF/KIAA0101) drives cell quiescence exit to promote lung tumorigenesis by remodeling the DREAM complex. PAF is highly expressed in lung adenocarcinoma (LUAD) and is associated with poor prognosis. Importantly, Paf knockout markedly suppressed LUAD development in mouse models. PAF depletion induced LUAD cell quiescence and growth arrest. PAF is required for the global expression of cell-cycle genes controlled by the repressive DREAM complex. Mechanistically, PAF inhibits DREAM complex formation by binding to RBBP4, a core DREAM subunit, leading to transactivation of DREAM target genes. Furthermore, pharmacological mimicking of PAF-depleted transcriptomes inhibited LUAD tumor growth. Our results unveil how the PAF-remodeled DREAM complex bypasses cell quiescence to promote lung tumorigenesis and suggest that the PAF-DREAM axis may be a therapeutic vulnerability in lung cancer.


Asunto(s)
Carcinogénesis/genética , Proteínas de Unión al ADN/genética , Proteínas de Interacción con los Canales Kv/genética , Neoplasias Pulmonares/genética , Pulmón/patología , Proteínas Represoras/genética , Células A549 , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Carcinogénesis/patología , División Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Ratones Desnudos , Células 3T3 NIH , Activación Transcripcional/genética , Transcriptoma/genética
2.
Hepatology ; 73(2): 776-794, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32380568

RESUMEN

BACKGROUND AND AIMS: How Wnt signaling is orchestrated in liver regeneration and tumorigenesis remains elusive. Recently, we identified transmembrane protein 9 (TMEM9) as a Wnt signaling amplifier. APPROACH AND RESULTS: TMEM9 facilitates v-ATPase assembly for vesicular acidification and lysosomal protein degradation. TMEM9 is highly expressed in regenerating liver and hepatocellular carcinoma (HCC) cells. TMEM9 expression is enriched in the hepatocytes around the central vein and acutely induced by injury. In mice, Tmem9 knockout impairs hepatic regeneration with aberrantly increased adenomatosis polyposis coli (Apc) and reduced Wnt signaling. Mechanistically, TMEM9 down-regulates APC through lysosomal protein degradation through v-ATPase. In HCC, TMEM9 is overexpressed and necessary to maintain ß-catenin hyperactivation. TMEM9-up-regulated APC binds to and inhibits nuclear translocation of ß-catenin, independent of HCC-associated ß-catenin mutations. Pharmacological blockade of TMEM9-v-ATPase or lysosomal degradation suppresses Wnt/ß-catenin through APC stabilization and ß-catenin cytosolic retention. CONCLUSIONS: Our results reveal that TMEM9 hyperactivates Wnt signaling for liver regeneration and tumorigenesis through lysosomal degradation of APC.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Tetracloruro de Carbono/administración & dosificación , Tetracloruro de Carbono/toxicidad , Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Núcleo Celular/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Células HEK293 , Células Hep G2 , Humanos , Leupeptinas/farmacología , Neoplasias Hepáticas/genética , Regeneración Hepática , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteolisis/efectos de los fármacos , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética , beta Catenina/metabolismo
3.
Proc Natl Acad Sci U S A ; 114(46): 12196-12201, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087318

RESUMEN

Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.


Asunto(s)
ADN Mitocondrial/metabolismo , Glutatión Transferasa/genética , Resistencia a la Insulina , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Obesidad/genética , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/patología , Animales , Dieta Alta en Grasa/efectos adversos , Regulación de la Expresión Génica , Glutatión Transferasa/deficiencia , Humanos , Inflamación , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Nucleotidiltransferasas/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transducción de Señal
4.
bioRxiv ; 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36865268

RESUMEN

Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and in some cases, new therapeutic leads. In select cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification. To expand the utility of this approach, we engineered cancer cell lines with inducible mismatch repair deficits, thus providing temporal control over mutagenesis. By screening for compound resistance phenotypes in cells with low or high rates of mutagenesis, we increased both the specificity and sensitivity of identifying resistance mutations. Using this inducible mutagenesis system, we implicate targets for multiple orphan cytotoxins, including a natural product and compounds emerging from a high-throughput screen, thus providing a robust tool for future MoA studies.

5.
Cell Chem Biol ; 30(11): 1453-1467.e8, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37607550

RESUMEN

Orphan cytotoxins are small molecules for which the mechanism of action (MoA) is either unknown or ambiguous. Unveiling the mechanism of these compounds may lead to useful tools for biological investigation and new therapeutic leads. In selected cases, the DNA mismatch repair-deficient colorectal cancer cell line, HCT116, has been used as a tool in forward genetic screens to identify compound-resistant mutations, which have ultimately led to target identification. To expand the utility of this approach, we engineered cancer cell lines with inducible mismatch repair deficits, thus providing temporal control over mutagenesis. By screening for compound resistance phenotypes in cells with low or high rates of mutagenesis, we increased both the specificity and sensitivity of identifying resistance mutations. Using this inducible mutagenesis system, we implicate targets for multiple orphan cytotoxins, including a natural product and compounds emerging from a high-throughput screen, thus providing a robust tool for future MoA studies.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Humanos , Reparación de la Incompatibilidad de ADN , Antineoplásicos/farmacología , Mutagénesis , Citotoxinas
6.
iScience ; 24(12): 103440, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34877497

RESUMEN

Organoids mimic the physiologic and pathologic events of organs. However, no consensus on esophageal organoid (EO) culture methods has been reached. Moreover, organoid models reproducing esophageal squamous cell carcinoma (ESCC) initiation have been unavailable. Herein, we sought to develop an esophageal minimum essential organoid culture medium (E-MEOM) for culturing murine EOs and establishing an early ESCC model. We formulated E-MEOM to grow EOs from a single cell with clonal expansion, maintenance, and passage. We found that EOs cultured in E-MEOM were equivalent to the esophageal epithelium by histological analysis and transcriptomic study. Trp53 knockout and Kras G12D expression in EOs induced the development of esophageal squamous neoplasia, an early lesion of ESCC. Here we propose the new formula for EO culture with minimum components and the organoid model recapitulating ESCC initiation, laying the foundation for ESCC research and drug discovery.

7.
Commun Biol ; 3(1): 257, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444826

RESUMEN

Obesity is a global epidemic that is caused by excessive energy intake or inefficient energy expenditure. Brown or beige fat dissipates energy as heat through non-shivering thermogenesis by their high density of mitochondria. However, how the mitochondrial stress-induced signal is coupled to the cellular thermogenic program remains elusive. Here, we show that mitochondrial DNA escape-induced activation of the cGAS-STING pathway negatively regulates thermogenesis in fat-specific DsbA-L knockout mice, a model of adipose tissue mitochondrial stress. Conversely, fat-specific overexpression of DsbA-L or knockout of STING protects mice against high-fat diet-induced obesity. Mechanistically, activation of the cGAS-STING pathway in adipocytes activated phosphodiesterase PDE3B/PDE4, leading to decreased cAMP levels and PKA signaling, thus reduced thermogenesis. Our study demonstrates that mitochondrial stress-activated cGAS-STING pathway functions as a sentinel signal that suppresses thermogenesis in adipose tissue. Targeting adipose cGAS-STING pathway may thus be a potential therapeutic strategy to counteract overnutrition-induced obesity and its associated metabolic diseases.


Asunto(s)
Glutatión Transferasa/fisiología , Proteínas de la Membrana/metabolismo , Mitocondrias/patología , Nucleotidiltransferasas/metabolismo , Obesidad/etiología , Hipernutrición/complicaciones , Termogénesis , Adipocitos/metabolismo , Adipocitos/patología , Animales , Dieta Alta en Grasa , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Nucleotidiltransferasas/genética , Obesidad/metabolismo , Obesidad/patología , Estrés Fisiológico
8.
Protein Cell ; 8(6): 446-454, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28220393

RESUMEN

Obesity, which underlies various metabolic and cardiovascular diseases, is a growing public health challenge for which established therapies are inadequate. Given the current obesity epidemic, there is a pressing need for more novel therapeutic strategies that will help adult individuals to manage their weight. One promising therapeutic intervention for reducing obesity is to enhance energy expenditure. Investigations into human brown fat and the recently discovered beige/brite fat have galvanized intense research efforts during the past decade because of their pivotal roles in energy dissipation. In this review, we summarize the evolution of human brown adipose tissue (hBAT) research and discuss new in vivo methodologies for evaluating energy expenditure in patients. We highlight the differences between human and mouse BAT by integrating and comparing their cellular morphology, function, and gene expression profiles. Although great advances in hBAT biology have been achieved in the past decade, more cellular models are needed to acquire a better understanding of adipose-specific processes and molecular mechanisms. Thus, this review also describes the development of a human brown fat cell line, which could provide promising mechanistic insights into hBAT function, signal transduction, and development. Finally, we focus on the therapeutic potential and current limitations of hBAT as an anti-glycemic, anti-lipidemic, and weight loss-inducing 'metabolic panacea'.


Asunto(s)
Tejido Adiposo Beige , Tejido Adiposo Pardo , Obesidad , Tejido Adiposo Beige/metabolismo , Tejido Adiposo Beige/patología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Animales , Línea Celular , Metabolismo Energético , Humanos , Ratones , Obesidad/metabolismo , Obesidad/patología , Obesidad/terapia
9.
Science ; 341(6144): 1236566, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23888043

RESUMEN

The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) protein kinase promotes growth and is the target of rapamycin, a clinically useful drug that also prolongs life span in model organisms. A persistent mystery is why the phosphorylation of many bona fide mTORC1 substrates is resistant to rapamycin. We find that the in vitro kinase activity of mTORC1 toward peptides encompassing established phosphorylation sites varies widely and correlates strongly with the resistance of the sites to rapamycin, as well as to nutrient and growth factor starvation within cells. Slight modifications of the sites were sufficient to alter mTORC1 activity toward them in vitro and to cause concomitant changes within cells in their sensitivity to rapamycin and starvation. Thus, the intrinsic capacity of a phosphorylation site to serve as an mTORC1 substrate, a property we call substrate quality, is a major determinant of its sensitivity to modulators of the pathway. Our results reveal a mechanism through which mTORC1 effectors can respond differentially to the same signals.


Asunto(s)
Péptidos/metabolismo , Proteínas/química , Proteínas/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/química , Serina-Treonina Quinasas TOR/metabolismo , Secuencias de Aminoácidos , Aminoácidos/metabolismo , Animales , Línea Celular , Medios de Cultivo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Naftiridinas/farmacología , Péptidos/química , Fosforilación , Proteínas/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA