Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Pediatr Res ; 94(4): 1341-1348, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37179436

RESUMEN

BACKGROUND: The study's objective is to evaluate if Molsidomine (MOL), an anti-oxidant, anti-inflammatory, and anti-apoptotic drug, is effective in treating hyperoxic lung injury (HLI). METHODS: The study consisted of four groups of neonatal rats characterized as the Control, Control+MOL, HLI, HLI + MOL groups. Near the end of the study, the lung tissue of the rats were evaluated with respect to apoptosis, histopathological damage, anti-oxidant and oxidant capacity as well as degree of inflammation. RESULTS: Compared to the HLI group, malondialdehyde and total oxidant status levels in lung tissue were notably reduced in the HLI + MOL group. Furthermore, mean superoxide dismutase, glutathione peroxidase, and glutathione activities/levels in lung tissue were significantly higher in the HLI + MOL group as compared to the HLI group. Tumor necrosis factor-α and interleukin-1ß elevations associated with hyperoxia were significantly reduced following MOL treatment. Median histopathological damage and mean alveolar macrophage numbers were found to be higher in the HLI and HLI + MOL groups when compared to the Control and Control+MOL groups. Both values were increased in the HLI group when compared to the HLI + MOL group. CONCLUSIONS: Our research is the first to demonstrate that bronchopulmonary dysplasia may be prevented through the protective characteristics of MOL, an anti-inflammatory, anti-oxidant, and anti-apoptotic drug. IMPACT: Molsidomine prophylaxis significantly decreased the level of oxidative stress markers. Molsidomine administration restored the activities of antioxidant enzymes. Molsidomine prophylaxis significantly reduced the levels of inflammatory cytokines. Molsidomine may provide a new and promising therapy for BPD in the future. Molsidomine prophylaxis decreased lung damage and macrophage infiltration in the tissue.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Ratas , Animales , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Antioxidantes/metabolismo , Molsidomina/farmacología , Molsidomina/uso terapéutico , Animales Recién Nacidos , Ratas Wistar , Hiperoxia/patología , Pulmón , Estrés Oxidativo , Oxidantes/farmacología , Antiinflamatorios/farmacología
2.
Pediatr Pulmonol ; 57(1): 109-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34581514

RESUMEN

AIM: Inflammation and oxidate stress are significant factors in the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to investigate the efficacy of apocynin (APO), an anti-inflammatory, antioxidant, and antiapoptotic drug, in the prophylaxis of neonatal hyperoxic lung injury. METHOD: This experimental study included 40 neonatal rats divided into the control, APO, BPD, and BPD + APO groups. The control and APO groups were kept in a normal room environment, while the BPD and BPD + APO groups were kept in a hyperoxic environment. The rats in the APO and BPD + APO groups were administered intraperitoneal APO, while the control and BPD rats were administered ordinary saline. At the end of the trial, lung tissue was evaluated with respect to the degree of histopathological injury, apoptosis, oxidant and antioxidant capacity, and severity of inflammation. RESULT: The BPD and BPD + APO groups exhibited higher mean histopathological injury and alveolar macrophage scores compared to the control and APO groups. Both scores were lower in the BPD + APO group in comparison to the BPD group. The BPD + APO group had a significantly lower average of TUNEL positive cells than the BPD group. The lung tissue examination indicated significantly higher levels of mean malondialdehyde (MDA), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in the BPD group compared to the control and APO groups. While the TNF-α and IL-1ß levels of the BPD + APO group were similar to that of the control group, the MDA and TOS levels were higher compared to the controls and lower compared to the BPD group. The BPD group demonstrated significantly lower levels/activities of mean total antioxidant status, glutathione reductase, superoxide dismutase, glutathione peroxidase in comparison to the control and APO groups. While the mean antioxidant enzyme activity of the BPD + APO group was lower than the control group, it was significantly higher compared to the BPD group. CONCLUSION: This is the first study in the literature to reveal through an experimental neonatal hyperoxic lung injury that APO, an anti-inflammatory, antioxidant, and antiapoptotic drug, exhibits protective properties against the development of BPD.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Acetofenonas , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Hiperoxia/complicaciones , Pulmón , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Estrés Oxidativo , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA