Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Vis ; 29: 217-233, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38222458

RESUMEN

Purpose: The retina-specific ABCA transporter, ABCA4, plays an essential role in translocating retinoids required by the visual cycle. ABCA4 genetic variants are known to cause a wide range of inherited retinal disorders, including Stargardt disease and cone-rod dystrophy. More than 1,400 ABCA4 missense variants have been identified; however, more than half of these remain variants of uncertain significance (VUS). The purpose of this study was to employ a predictive strategy to assess the pathogenicity of ABCA4 variants in inherited retinal diseases using protein modeling and computational approaches. Methods: We studied 13 clinically well-defined patients with ABCA4 retinopathies and identified the presence of 10 missense variants, including one novel variant in the ABCA4 gene, by next-generation sequencing (NGS). All variants were structurally analyzed using AlphaFold2 models and existing experimental structures of human ABCA4 protein. The results of these analyses were compared with patient clinical presentations to test the effectiveness of the methods employed in predicting variant pathogenicity. Results: We conducted a phenotype-genotype comparison of 13 genetically and phenotypically well-defined retinal disease patients. The in silico protein structure analyses we employed successfully detected the deleterious effect of missense variants found in this affected patient cohort. Our study provides American College of Medical Genetics and Genomics (ACMG)-defined supporting evidence of the pathogenicity of nine missense ABCA4 variants, aligning with the observed clinical phenotypes in this cohort. Conclusions: In this report, we describe a systematic approach to predicting the pathogenicity of ABCA4 variants by means of three-dimensional (3D) protein modeling and in silico structure analysis. Our results demonstrate concordance between disease severity and structural changes in protein models induced by genetic variations. Furthermore, the present study suggests that in silico protein structure analysis can be used as a predictor of pathogenicity and may facilitate the assessment of genetic VUS.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Retina , Humanos , Mutación/genética , Virulencia , Linaje , Retina/metabolismo , Enfermedad de Stargardt/genética , Fenotipo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37108442

RESUMEN

The retina-specific ATP-binding cassette transporter protein ABCA4 is responsible for properly continuing the visual cycle by removing toxic retinoid byproducts of phototransduction. Functional impairment caused by ABCA4 sequence variations is the leading cause of autosomal recessive inherited retinal disorders, including Stargardt disease, retinitis pigmentosa, and cone-rod dystrophy. To date, more than 3000 ABCA4 genetic variants have been identified, approximately 40 percent of which have not been able to be classified for pathogenicity assessments. This study examined 30 missense ABCA4 variants using AlphaFold2 protein modeling and computational structure analysis for pathogenicity prediction. All variants classified as pathogenic (n = 10) were found to have deleterious structural consequences. Eight of the ten benign variants were structurally neutral, while the remaining two resulted in mild structural changes. This study's results provided multiple lines of computational pathogenicity evidence for eight ABCA4 variants of uncertain clinical significance. Overall, in silico analyses of ABCA4 can provide a valuable tool for understanding the molecular mechanisms of retinal degeneration and their pathogenic impact.


Asunto(s)
Distrofias de Conos y Bastones , Degeneración Retiniana , Retinitis Pigmentosa , Humanos , Degeneración Retiniana/genética , Degeneración Retiniana/metabolismo , Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Enfermedad de Stargardt/genética , Enfermedad de Stargardt/metabolismo , Distrofias de Conos y Bastones/metabolismo , Mutación , Linaje , Transportadoras de Casetes de Unión a ATP/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA