RESUMEN
Neuromyelitis optica (NMO) is an autoimmune inflammatory disease that primarily affects the optic nerve and spinal cord within the central nervous system (CNS). Acute astrocyte injury caused by autoantibodies against aquaporin 4 (NMO-IgG) is a well-established key factor in the pathogenesis, ultimately leading to neuronal damage and patient disability. In addition to these humoral immune processes, numerous innate immune cells were found in the acute lesions of NMO patients. However, the origin and function of these innate immune cells remain unclear in NMO pathogenesis. Therefore, this study aims to analyze the origin and functions of these innate immune cells in an NMO-like mouse model and evaluate their role in the pathophysiology of NMO. The expression of Tmem119 on Iba1 + cells in brain tissue disappeared immediately after the injection of NMO-IgG + human complement mixture, while the expression of P2ry12 remained well-maintained at 1 day after injection. Based on these observations, it was demonstrated that monocytes infiltrate the brain during the early stages of the pathological process and are closely associated with the inflammatory response through the expression of the proinflammatory cytokine IL-1ß. Understanding the variations in the expression patterns of P2ry12, Tmem119, and other markers could be helpful in distinguishing between these cell types and further analyzing their functions. Therefore, this research may contribute to a better understanding of the mechanisms and potential treatments for NMO.
Asunto(s)
Enfermedades Autoinmunes , Neuromielitis Óptica , Ratones , Animales , Humanos , Monocitos/metabolismo , Inmunoglobulina G , Acuaporina 4/metabolismo , Inflamación/complicaciones , Modelos Animales de Enfermedad , Enfermedades Autoinmunes/complicaciones , AutoanticuerposRESUMEN
Cognitive impairment refers to notable declines in cognitive abilities including memory, language, and emotional stability leading to the inability to accomplish essential activities of daily living. Astrocytes play an important role in cognitive function, and homeostasis of the astrocyte-neuron lactate shuttle (ANLS) system is essential for maintaining cognitive functions. Aquaporin-4 (AQP-4) is a water channel expressed in astrocytes and has been shown to be associated with various brain disorders, but the direct relationship between learning, memory, and AQP-4 is unclear. We examined the relationship between AQP-4 and cognitive functions related to learning and memory. Mice with genetic deletion of AQP-4 showed significant behavioral and emotional changes including hyperactivity and instability, and impaired cognitive functions such as spatial learning and memory retention. 18 F-FDG PET imaging showed significant metabolic changes in the brains of AQP-4 knockout mice such as reductions in glucose absorption. Such metabolic changes in the brain seemed to be the direct results of changes in the expression of metabolite transporters, as the mRNA levels of multiple glucose and lactate transporters in astrocytes and neurons were significantly decreased in the cortex and hippocampus of AQP-4 knockout mice. Indeed, AQP-4 knockout mice showed significantly higher accumulation of both glucose and lactate in their brains compared with wild-type mice. Our results show that the deficiency of AQP-4 can cause problems in the metabolic function of astrocytes and lead to cognitive impairment, and that the deficiency of AQP4 in astrocyte endfeet can cause abnormalities in the ANLS system.
Asunto(s)
Acuaporina 4 , Disfunción Cognitiva , Ácido Láctico , Animales , Humanos , Ratones , Acuaporina 4/genética , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Disfunción Cognitiva/metabolismo , Glucosa/metabolismo , Ácido Láctico/metabolismo , Ratones Noqueados , Neuronas/metabolismoRESUMEN
In intracerebral hemorrhage (ICH), delayed secondary neural damages largely occur from perihematomal edema (PHE) resulting from the disruption of the blood-brain barrier (BBB). PHE is often considered the principal cause of morbidity and mortality in patients with ICH. Nevertheless, the main cellular mechanism as well as the specific BBB component involved in the formation of PHE after ICH remains elusive. Herein, we evaluated the role of AQP4, a water channel expressed on the astrocytes of the BBB, in the formation of PHE in ICH. The static and dynamic functions of the BBB were evaluated by analyzing the microstructure and leakage assay. Protein changes in the PHE lesion were analyzed and the control mechanism of AQP4 expression by reactive oxygen species was also investigated. Delayed PHE formation due to BBB disruption after ICH was confirmed by the decreased coverage of multiple BBB components and increased dynamic leakages. Microstructure assay showed that among the BBB components, AQP4 showed a markedly decreased expression in the PHE lesions. The decrease in AQP4 was due to microenvironmental ROS derived from the hemorrhage and was restored by treatment with ROS scavenger. AQP4-deficient mice had significantly larger PHE lesions and unfavorable survival outcomes compared with wild-type mice. Our data identify AQP4 as a specific BBB-modulating target for alleviating PHE in ICH. Further comprehensive studies are needed to form the preclinical basis for the use of AQP4 enhancers as BBB modulators for preventing delayed cerebral edema after ICH.
Asunto(s)
Acuaporina 4 , Barrera Hematoencefálica , Animales , Barrera Hematoencefálica/metabolismo , Hemorragia Cerebral/tratamiento farmacológico , Edema , Humanos , Ratones , Regulación hacia ArribaRESUMEN
Tenebrio molitor are large insects and their larvae are consumed as food in many countries. The nutritional composition of T. molitor has been studied and contains high amounts of proteins, unsaturated fatty acids, and valuable minerals. However, the bioactivity of T. molitor has not been fully understood. We examined the effects of T. molitor extracts on resistance to oxidative stress and organism's lifespan using Caenorhabditis elegans as a model system. The response to heat shock and ultraviolet (UV) irradiation was monitored in vivo. The extracts from T. molitor showed significant effects on resistance to oxidative stress and UV irradiation and extend both mean and maximum lifespan of C. elegans. The number of progeny produced significantly increased in animals supplemented with T. molitor extracts. In addition, the expression of hsp-16.2 and sod-3 was markedly upregulated by supplementation with T. molitor extracts. These findings suggest that T. molitor extracts can increase response to stressors and extend lifespan by the induction of longevity assurance genes in C. elegans.