Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cell ; 179(3): 703-712.e7, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31587897

RESUMEN

Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes.


Asunto(s)
Bacterias/genética , Transferencia de Gen Horizontal , Hemípteros/genética , Peptidoglicano/biosíntesis , Simbiosis , Animales , Bacterias/patogenicidad , Genes Bacterianos , Hemípteros/microbiología , Interacciones Huésped-Patógeno , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Peptidoglicano/genética
2.
Proc Natl Acad Sci U S A ; 121(26): e2318761121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38885389

RESUMEN

Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea in Thermococcus kodakarensis results in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid-based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in two Archaeoglobus species and the production of GMGTs with up to six rings in Vulcanisaeta distributa. The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.


Asunto(s)
Archaea , Proteínas Arqueales , Filogenia , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Archaea/metabolismo , Archaea/genética , Thermococcus/metabolismo , Thermococcus/genética , Éteres de Glicerilo/metabolismo , Lípidos de la Membrana/metabolismo , Lípidos de la Membrana/biosíntesis
3.
PLoS Biol ; 21(9): e3002292, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747940

RESUMEN

Sulfate-coupled anaerobic oxidation of methane (AOM) is performed by multicellular consortia of anaerobic methanotrophic archaea (ANME) in obligate syntrophic partnership with sulfate-reducing bacteria (SRB). Diverse ANME and SRB clades co-associate but the physiological basis for their adaptation and diversification is not well understood. In this work, we used comparative metagenomics and phylogenetics to investigate the metabolic adaptation among the 4 main syntrophic SRB clades (HotSeep-1, Seep-SRB2, Seep-SRB1a, and Seep-SRB1g) and identified features associated with their syntrophic lifestyle that distinguish them from their non-syntrophic evolutionary neighbors in the phylum Desulfobacterota. We show that the protein complexes involved in direct interspecies electron transfer (DIET) from ANME to the SRB outer membrane are conserved between the syntrophic lineages. In contrast, the proteins involved in electron transfer within the SRB inner membrane differ between clades, indicative of convergent evolution in the adaptation to a syntrophic lifestyle. Our analysis suggests that in most cases, this adaptation likely occurred after the acquisition of the DIET complexes in an ancestral clade and involve horizontal gene transfers within pathways for electron transfer (CbcBA) and biofilm formation (Pel). We also provide evidence for unique adaptations within syntrophic SRB clades, which vary depending on the archaeal partner. Among the most widespread syntrophic SRB, Seep-SRB1a, subclades that specifically partner ANME-2a are missing the cobalamin synthesis pathway, suggestive of nutritional dependency on its partner, while closely related Seep-SRB1a partners of ANME-2c lack nutritional auxotrophies. Our work provides insight into the features associated with DIET-based syntrophy and the adaptation of SRB towards it.


Asunto(s)
Archaea , Sulfatos , Anaerobiosis , Sulfatos/metabolismo , Sedimentos Geológicos/microbiología , Bacterias/genética , Oxidación-Reducción , Filogenia
4.
Proc Natl Acad Sci U S A ; 120(25): e2302815120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307484

RESUMEN

Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane, and its activity accounts for nearly all biologically produced methane released into the atmosphere. The assembly of MCR is an intricate process involving the installation of a complex set of posttranslational modifications and the unique Ni-containing tetrapyrrole called coenzyme F430. Despite decades of research, details of MCR assembly remain largely unresolved. Here, we report the structural characterization of MCR in two intermediate states of assembly. These intermediate states lack one or both F430 cofactors and form complexes with the previously uncharacterized McrD protein. McrD is found to bind asymmetrically to MCR, displacing large regions of the alpha subunit and increasing active-site accessibility for the installation of F430-shedding light on the assembly of MCR and the role of McrD therein. This work offers crucial information for the expression of MCR in a heterologous host and provides targets for the design of MCR inhibitors.


Asunto(s)
Atmósfera , Metano
5.
PLoS Biol ; 20(1): e3001508, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34986141

RESUMEN

The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor.


Asunto(s)
Archaea , Electrones , Anaerobiosis , Archaea/genética , Archaea/metabolismo , Genómica , Sedimentos Geológicos/microbiología , Metano/metabolismo , Oxidación-Reducción , Filogenia , Sulfatos/metabolismo
6.
Appl Environ Microbiol ; : e0222023, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916294

RESUMEN

Methyl-coenzyme M reductase (MCR) catalyzes the final step of methanogenesis, the microbial metabolism responsible for nearly all biological methane emissions to the atmosphere. Decades of biochemical and structural research studies have generated detailed insights into MCR function in vitro, yet very little is known about the interplay between MCR and methanogen physiology. For instance, while it is routinely stated that MCR catalyzes the rate-limiting step of methanogenesis, this has not been categorically tested. In this study, to gain a more direct understanding of MCR's control on the growth of Methanosarcina acetivorans, we generate a strain with an inducible mcr operon on the chromosome, allowing for careful control of MCR expression. We show that MCR is not growth rate-limiting in substrate-replete batch cultures. However, through careful titration of MCR expression, growth-limiting state(s) can be obtained. Transcriptomic analysis of M. acetivorans experiencing MCR limitation reveals a global response with hundreds of differentially expressed genes across diverse functional categories. Notably, MCR limitation leads to strong induction of methylsulfide methyltransferases, likely due to insufficient recycling of metabolic intermediates. In addition, the mcr operon is not transcriptionally regulated, i.e., it is constitutively expressed, suggesting that the overabundance of MCR might be beneficial when cells experience nutrient limitation or stressful conditions. Altogether, we show that there is a wide range of cellular MCR concentrations that can sustain optimal growth, suggesting that other factors such as anabolic reactions might be rate-limiting for methanogenic growth. IMPORTANCE: Methane is a potent greenhouse gas that has contributed to ca. 25% of global warming in the post-industrial era. Atmospheric methane is primarily of biogenic origin, mostly produced by microorganisms called methanogens. Methyl-coenzyme M reductase (MCR) catalyzes methane formatio in methanogens. Even though MCR comprises ca. 10% of the cellular proteome, it is hypothesized to be growth-limiting during methanogenesis. In this study, we show that Methanosarcina acetivorans cells grown in substrate-replicate batch cultures produce more MCR than its cellular demand for optimal growth. The tools outlined in this study can be used to refine metabolic models of methanogenesis and assay lesions in MCR in a higher-throughput manner than isolation and biochemical characterization of pure protein.

7.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161271

RESUMEN

Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and selectively enriched in manganese, the mechanism for which has been a long-standing geological mystery. We collected varnish samples from diverse sites across the western United States, examined them in petrographic thin section using microscale chemical imaging techniques, and investigated the associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing. Our analyses described a material governed by sunlight, water, and manganese redox cycling that hosts an unusually aerobic microbial ecosystem characterized by a remarkable abundance of photosynthetic Cyanobacteria in the genus Chroococcidiopsis as the major autotrophic constituent. We then showed that diverse Cyanobacteria, including the relevant Chroococcidiopsis taxon, accumulate extraordinary amounts of intracellular manganese-over two orders of magnitude higher manganese content than other cells. The speciation of this manganese determined by advanced paramagnetic resonance techniques suggested that the Cyanobacteria use it as a catalytic antioxidant-a valuable adaptation for coping with the substantial oxidative stress present in this environment. Taken together, these results indicated that the manganese enrichment in varnish is related to its specific uptake and use by likely founding members of varnish microbial communities.


Asunto(s)
Fenómenos Ecológicos y Ambientales , Sedimentos Geológicos/química , Manganeso/análisis , Antioxidantes/metabolismo , Cianobacterias/metabolismo , Sedimentos Geológicos/microbiología , Microbiota , Oxidación-Reducción , Luz Solar , Agua
8.
Appl Environ Microbiol ; 88(17): e0092922, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35950875

RESUMEN

Alkaline fluids venting from chimneys of the Lost City hydrothermal field flow from a potentially vast microbial habitat within the seafloor where energy and organic molecules are released by chemical reactions within rocks uplifted from Earth's mantle. In this study, we investigated hydrothermal fluids venting from Lost City chimneys as windows into subseafloor environments where the products of geochemical reactions, such as molecular hydrogen (H2), formate, and methane, may be the only available sources of energy for biological activity. Our deep sequencing of metagenomes and metatranscriptomes from these hydrothermal fluids revealed a few key species of archaea and bacteria that are likely to play critical roles in the subseafloor microbial ecosystem. We identified a population of Thermodesulfovibrionales (belonging to phylum Nitrospirota) as a prevalent sulfate-reducing bacterium that may be responsible for much of the consumption of H2 and sulfate in Lost City fluids. Metagenome-assembled genomes (MAGs) classified as Methanosarcinaceae and Candidatus Bipolaricaulota were also recovered from venting fluids and represent potential methanogenic and acetogenic members of the subseafloor ecosystem. These genomes share novel hydrogenases and formate dehydrogenase-like sequences that may be unique to hydrothermal environments where H2 and formate are much more abundant than carbon dioxide. The results of this study include multiple examples of metabolic strategies that appear to be advantageous in hydrothermal and subsurface alkaline environments where energy and carbon are provided by geochemical reactions. IMPORTANCE The Lost City hydrothermal field is an iconic example of a microbial ecosystem fueled by energy and carbon from Earth's mantle. Uplift of mantle rocks into the seafloor can trigger a process known as serpentinization that releases molecular hydrogen (H2) and creates unusual environmental conditions where simple organic carbon molecules are more stable than dissolved inorganic carbon. This study provides an initial glimpse into the kinds of microbes that live deep within the seafloor where serpentinization takes place, by sampling hydrothermal fluids exiting from the Lost City chimneys. The metabolic strategies that these microbes appear to be using are also shared by microbes that inhabit other sites of serpentinization, including continental subsurface environments and natural springs. Therefore, the results of this study contribute to a broader, interdisciplinary effort to understand the general principles and mechanisms by which serpentinization-associated processes can support life on Earth and perhaps other worlds.


Asunto(s)
Ecosistema , Respiraderos Hidrotermales , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Formiatos/metabolismo , Hidrógeno/metabolismo , Respiraderos Hidrotermales/microbiología , Sulfatos/metabolismo
10.
Proc Natl Acad Sci U S A ; 116(41): 20716-20724, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548422

RESUMEN

Metal-reducing bacteria direct electrons to their outer surfaces, where insoluble metal oxides or electrodes act as terminal electron acceptors, generating electrical current from anaerobic respiration. Geobacter sulfurreducens is a commonly enriched electricity-producing organism, forming thick conductive biofilms that magnify total activity by supporting respiration of cells not in direct contact with electrodes. Hypotheses explaining why these biofilms fail to produce higher current densities suggest inhibition by formation of pH, nutrient, or redox potential gradients; but these explanations are often contradictory, and a lack of direct measurements of cellular growth within biofilms prevents discrimination between these models. To address this fundamental question, we measured the anabolic activity of G. sulfurreducens biofilms using stable isotope probing coupled to nanoscale secondary ion mass spectrometry (nanoSIMS). Our results demonstrate that the most active cells are at the anode surface, and that this activity decreases with distance, reaching a minimum 10 µm from the electrode. Cells nearest the electrode continue to grow at their maximum rate in weeks-old biofilms 80-µm-thick, indicating nutrient or buffer diffusion into the biofilm is not rate-limiting. This pattern, where highest activity occurs at the electrode and declines with each cell layer, is present in thin biofilms (<5 µm) and fully grown biofilms (>20 µm), and at different anode redox potentials. These results suggest a growth penalty is associated with respiring insoluble electron acceptors at micron distances, which has important implications for improving microbial electrochemical devices as well as our understanding of syntrophic associations harnessing the phenomenon of microbial conductivity.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Respiración de la Célula , Electricidad , Electrodos , Geobacter/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Espectrometría de Masa de Ion Secundario/métodos , Fenómenos Bioquímicos , Fuentes de Energía Bioeléctrica , Geobacter/crecimiento & desarrollo , Nanotecnología , Oxidación-Reducción
11.
Appl Environ Microbiol ; 87(17): e0070621, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34190605

RESUMEN

A strain of Geobacter sulfurreducens, an organism capable of respiring solid extracellular substrates, lacking four of five outer membrane cytochrome complexes (extABCD+ strain) grows faster and produces greater current density than the wild type grown under identical conditions. To understand cellular and biofilm modifications in the extABCD+ strain responsible for this increased performance, biofilms grown using electrodes as terminal electron acceptors were sectioned and imaged using electron microscopy to determine changes in thickness and cell density, while parallel biofilms incubated in the presence of nitrogen and carbon isotopes were analyzed using NanoSIMS (nanoscale secondary ion mass spectrometry) to quantify and localize anabolic activity. Long-distance electron transfer parameters were measured for wild-type and extABCD+ biofilms spanning 5-µm gaps. Our results reveal that extABCD+ biofilms achieved higher current densities through the additive effects of denser cell packing close to the electrode (based on electron microscopy), combined with higher metabolic rates per cell compared to the wild type (based on increased rates of 15N incorporation). We also observed an increased rate of electron transfer through extABCD+ versus wild-type biofilms, suggesting that denser biofilms resulting from the deletion of unnecessary multiheme cytochromes streamline electron transfer to electrodes. The combination of imaging, physiological, and electrochemical data confirms that engineered electrogenic bacteria are capable of producing more current per cell and, in combination with higher biofilm density and electron diffusion rates, can produce a higher final current density than the wild type. IMPORTANCE Current-producing biofilms in microbial electrochemical systems could potentially sustain technologies ranging from wastewater treatment to bioproduction of electricity if the maximum current produced could be increased and current production start-up times after inoculation could be reduced. Enhancing the current output of microbial electrochemical systems has been mostly approached by engineering physical components of reactors and electrodes. Here, we show that biofilms formed by a Geobacter sulfurreducens strain producing ∼1.4× higher current than the wild type results from a combination of denser cell packing and higher anabolic activity, enabled by an increased rate of electron diffusion through the biofilms. Our results confirm that it is possible to engineer electrode-specific G. sulfurreducens strains with both faster growth on electrodes and streamlined electron transfer pathways for enhanced current production.


Asunto(s)
Biopelículas , Espacio Extracelular/metabolismo , Geobacter/química , Geobacter/fisiología , Electricidad , Electrodos , Transporte de Electrón , Espacio Extracelular/química , Geobacter/crecimiento & desarrollo
12.
Nature ; 526(7574): 531-5, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26375009

RESUMEN

Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.


Asunto(s)
Archaea/metabolismo , Deltaproteobacteria/metabolismo , Metano/metabolismo , Análisis de la Célula Individual , Simbiosis , Anaerobiosis , Archaea/citología , Citocromos/genética , Citocromos/metabolismo , Citocromos/ultraestructura , Deltaproteobacteria/citología , Difusión , Transporte de Electrón , Genoma Arqueal/genética , Genoma Bacteriano/genética , Hemo/metabolismo , Microbiota/fisiología , Modelos Biológicos , Datos de Secuencia Molecular , Sulfatos/metabolismo
13.
Environ Microbiol ; 20(12): 4281-4296, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29968367

RESUMEN

Nitrogen fixation, the biological conversion of N2 to NH3 , is critical to alleviating nitrogen limitation in many marine ecosystems. To date, few measurements exist of N2 fixation in deep-sea sediments. Here, we conducted > 400 bottle incubations with sediments from methane seeps, whale falls and background sites off the western coast of the United States from 600 to 2893 m water depth to investigate the potential rates, spatial distribution and biological mediators of benthic N2 fixation. We found that N2 fixation was widespread, yet heterogeneously distributed with sediment depth at all sites. In some locations, rates exceeded previous measurements by > 10×, and provided up to 30% of the community anabolic growth requirement for nitrogen. Diazotrophic activity appeared to be inhibited by pore water ammonium: N2 fixation was only observed if incubation ammonium concentrations were ≤ 25 µM, and experimental additions of ammonium reduced diazotrophy. In seep sediments, N2 fixation was dependent on CH4 and coincident with sulphate reduction, consistent with previous work showing diazotrophy by microorganisms mediating sulphate-coupled methane oxidation. However, the pattern of diazotrophy was different in whale-fall and associated reference sediments, where it was largely unaffected by CH4 , suggesting catabolically different diazotrophs at these sites.


Asunto(s)
Bacterias/metabolismo , Carbono/química , Carbono/metabolismo , Sedimentos Geológicos/microbiología , Fijación del Nitrógeno/fisiología , Compuestos de Amonio , Ecosistema , Metano , Nitrógeno , Océano Pacífico , Agua de Mar , Microbiología del Suelo
14.
Appl Environ Microbiol ; 84(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625978

RESUMEN

Phylogenetically diverse environmental ANME archaea and sulfate-reducing bacteria cooperatively catalyze the anaerobic oxidation of methane oxidation (AOM) in multicelled consortia within methane seep environments. To better understand these cells and their symbiotic associations, we applied a suite of electron microscopy approaches, including correlative fluorescence in situ hybridization-electron microscopy (FISH-EM), transmission electron microscopy (TEM), and serial block face scanning electron microscopy (SBEM) three-dimensional (3D) reconstructions. FISH-EM of methane seep-derived consortia revealed phylogenetic variability in terms of cell morphology, ultrastructure, and storage granules. Representatives of the ANME-2b clade, but not other ANME-2 groups, contained polyphosphate-like granules, while some bacteria associated with ANME-2a/2c contained two distinct phases of iron mineral chains resembling magnetosomes. 3D segmentation of two ANME-2 consortium types revealed cellular volumes of ANME and their symbiotic partners that were larger than previous estimates based on light microscopy. Polyphosphate-like granule-containing ANME (tentatively termed ANME-2b) were larger than both ANME with no granules and partner bacteria. This cell type was observed with up to 4 granules per cell, and the volume of the cell was larger in proportion to the number of granules inside it, but the percentage of the cell occupied by these granules did not vary with granule number. These results illuminate distinctions between ANME-2 archaeal lineages and partnering bacterial populations that are apparently unified in their ability to perform anaerobic methane oxidation.IMPORTANCE Methane oxidation in anaerobic environments can be accomplished by a number of archaeal groups, some of which live in syntrophic relationships with bacteria in structured consortia. Little is known of the distinguishing characteristics of these groups. Here, we applied imaging approaches to better understand the properties of these cells. We found unexpected morphological, structural, and volume variability of these uncultured groups by correlating fluorescence labeling of cells with electron microscopy observables.


Asunto(s)
Archaea/clasificación , Archaea/ultraestructura , Metano/metabolismo , Simbiosis , Anaerobiosis , Archaea/metabolismo , Deltaproteobacteria/metabolismo , Deltaproteobacteria/ultraestructura , Sedimentos Geológicos/microbiología , Hibridación Fluorescente in Situ , Consorcios Microbianos , Microscopía Electrónica , Oxidación-Reducción , Filogenia
15.
Environ Microbiol ; 16(10): 3012-29, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24107237

RESUMEN

Nitrogen (N2) fixation was investigated at Mound 12, Costa Rica, to determine its spatial distribution and biogeochemical controls in deep-sea methane seep sediment. Using (15)N2 tracer experiments and isotope ratio mass spectrometry analysis, we observed that seep N2 fixation is methane-dependent, and that N2 fixation rates peak in a narrow sediment depth horizon corresponding to increased abundance of aggregates of anaerobic methanotrophic archaea (ANME-2) and sulfate-reducing bacteria (SRB). Using fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS), we directly measured (15)N2 uptake by ANME-2/SRB aggregates (n = 26) and observed maximum (15)N incorporation within ANME-2-dominated areas of the aggregates, consistent with previous analyses. NanoSIMS analysis of single cells (n = 34) from the same microcosm experiment revealed no (15)N2 uptake. Together, these observations suggest that ANME-2, and possibly physically associated SRB, mediate the majority of new nitrogen production within the seep ecosystem. ANME-2 diazotrophy was observed while in association with members of two distinct orders of SRB: Desulfobacteraceae and Desulfobulbaceae. The rate of N2 fixation per unit volume biomass was independent of the identity of the associated SRB, aggregate size and morphology. Our results show that the distribution of seep N2 fixation is heterogeneous, laterally and with depth in the sediment, and is likely influenced by chemical gradients affecting the abundance and activity of ANME-2/SRB aggregates.


Asunto(s)
Archaea/metabolismo , Sedimentos Geológicos/microbiología , Metano/metabolismo , Fijación del Nitrógeno , Compuestos de Amonio/análisis , Archaea/clasificación , Deltaproteobacteria/metabolismo , Ecosistema , Nitratos/análisis , Nitritos/análisis , Filogenia , Agua de Mar/química
16.
Nat Commun ; 15(1): 4858, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871712

RESUMEN

Serpentinization, a geochemical process found on modern and ancient Earth, provides an ultra-reducing environment that can support microbial methanogenesis and acetogenesis. Several groups of archaea, such as the order Methanocellales, are characterized by their ability to produce methane. Here, we generate metagenomic sequences from serpentinized springs in The Cedars, California, and construct a circularized metagenome-assembled genome of a Methanocellales archaeon, termed Met12, that lacks essential methanogenesis genes. The genome includes genes for an acetyl-CoA pathway, but lacks genes encoding methanogenesis enzymes such as methyl-coenzyme M reductase, heterodisulfide reductases and hydrogenases. In situ transcriptomic analyses reveal high expression of a multi-heme c-type cytochrome, and heterologous expression of this protein in a model bacterium demonstrates that it is capable of accepting electrons. Our results suggest that Met12, within the order Methanocellales, is not a methanogen but a CO2-reducing, electron-fueled acetogen without electron bifurcation.


Asunto(s)
Metano , Metano/metabolismo , Genoma Arqueal , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Metagenoma/genética , Filogenia , Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Metagenómica
17.
Front Microbiol ; 14: 1182497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396382

RESUMEN

Terrestrial serpentinizing systems allow us insight into the realm of alkaliphilic microbial communities driven by geology in a way that is frequently more accessible than their deep subsurface or marine counterparts. However, these systems are also marked by geochemical and microbial community variation due to the interactions of serpentinized fluids with host geology and the surface environment. To separate the transient from the endemic microbes in a hyperalkaline environment, we assessed the Ney Springs terrestrial serpentinizing system microbial community and geochemistry at six time points over the span of a year. Using 16S rRNA gene surveys we observed 93 amplicon sequence variants (ASVs) that were found at every sampling event. This is compared to ~17,000 transient ASVs that were detected only once across the six sampling events. Of the resident community members, 16 of these ASVs were regularly greater than 1% of the community during every sampling period. Additionally, many of these core taxa experienced statistically significant changes in relative abundance with time. Variation in the abundance of some core populations correlated with geochemical variation. For example, members of the Tindallia group, showed a positive correlation with variation in levels of ammonia at the spring. Investigating the metagenome assembled genomes of these microbes revealed evidence of the potential for ammonia generation via Stickland reactions within Tindallia. This observation offers new insight into the origin of high ammonia concentrations (>70 mg/L) seen at this site. Similarly, the abundance of putative sulfur-oxidizing microbes like Thiomicrospira, Halomonas, and a Rhodobacteraceae species could be linked to changes observed in sulfur-oxidation intermediates like tetrathionate and thiosulfate. While these data supports the influence of core microbial community members on a hyperalkaline spring's geochemistry, there is also evidence that subsurface processes affect geochemistry and may impact community dynamics as well. Though the physiology and ecology of these astrobiologically relevant ecosystems are still being uncovered, this work helps identify a stable microbial community that impacts spring geochemistry in ways not previously observed in serpentinizing ecosystems.

18.
ISME J ; 17(10): 1649-1659, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37452096

RESUMEN

The preeminent source of biological methane on Earth is methyl coenzyme M reductase (Mcr)-dependent archaeal methanogenesis. A growing body of evidence suggests a diversity of archaea possess Mcr, although experimental validation of hypothesized methane metabolisms has been missing. Here, we provide evidence of a functional Mcr-based methanogenesis pathway in a novel member of the family Archaeoglobaceae, designated Methanoglobus nevadensis, which we enriched from a terrestrial hot spring on the polysaccharide xyloglucan. Our incubation assays demonstrate methane production that is highly sensitive to the Mcr inhibitor bromoethanesulfonate, stimulated by xyloglucan and xyloglucan-derived sugars, concomitant with the consumption of molecular hydrogen, and causing a deuterium fractionation in methane characteristic of hydrogenotrophic and methylotrophic methanogens. Combined with the recovery and analysis of a high-quality M. nevadensis metagenome-assembled genome encoding a divergent Mcr and diverse potential electron and carbon transfer pathways, our observations suggest methanogenesis in M. nevadensis occurs via Mcr and is fueled by the consumption of cross-fed byproducts of xyloglucan fermentation mediated by other community members. Phylogenetic analysis shows close affiliation of the M. nevadensis Mcr with those from Korarchaeota, Nezhaarchaeota, Verstraetearchaeota, and other Archaeoglobales that are divergent from well-characterized Mcr. We propose these archaea likely also use functional Mcr complexes to generate methane on the basis of our experimental validation in M. nevadensis. Thus, divergent Mcr-encoding archaea may be underestimated sources of biological methane in terrestrial and marine hydrothermal environments.


Asunto(s)
Archaeoglobales , Manantiales de Aguas Termales , Filogenia , Archaeoglobales/metabolismo , Metano/metabolismo , Archaea
19.
ISME J ; 17(11): 2014-2022, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37715042

RESUMEN

Granular biofilms producing medium-chain carboxylic acids (MCCA) from carbohydrate-rich industrial feedstocks harbor highly streamlined communities converting sugars to MCCA either directly or via lactic acid as intermediate. We investigated the spatial organization and growth activity patterns of MCCA producing granular biofilms grown on an industrial side stream to test (i) whether key functional guilds (lactic acid producing Olsenella and MCCA producing Oscillospiraceae) stratified in the biofilm based on substrate usage, and (ii) whether spatial patterns of growth activity shaped the unique, lenticular morphology of these biofilms. First, three novel isolates (one Olsenella and two Oscillospiraceae species) representing over half of the granular biofilm community were obtained and used to develop FISH probes, revealing that key functional guilds were not stratified. Instead, the outer 150-500 µm of the granular biofilm consisted of a well-mixed community of Olsenella and Oscillospiraceae, while deeper layers were made up of other bacteria with lower activities. Second, nanoSIMS analysis of 15N incorporation in biofilms grown in normal and lactic acid amended conditions suggested Oscillospiraceae switched from sugars to lactic acid as substrate. This suggests competitive-cooperative interactions may govern the spatial organization of these biofilms, and suggests that optimizing biofilm size may be a suitable process engineering strategy. Third, growth activities were similar in the polar and equatorial biofilm peripheries, leaving the mechanism behind the lenticular biofilm morphology unexplained. Physical processes (e.g., shear hydrodynamics, biofilm life cycles) may have contributed to lenticular biofilm development. Together, this study develops an ecological framework of MCCA-producing granular biofilms that informs bioprocess development.


Asunto(s)
Biopelículas , Ácidos Carboxílicos , Bacterias , Ácido Láctico , Azúcares
20.
mBio ; 13(2): e0342121, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35285693

RESUMEN

Chemolithoautotrophic manganese oxidation has long been theorized but only recently demonstrated in a bacterial coculture. The majority member of the coculture, "Candidatus Manganitrophus noduliformans," is a distinct but not yet isolated lineage in the phylum Nitrospirota (Nitrospirae). Here, we established two additional MnCO3-oxidizing cultures using inocula from Santa Barbara (California) and Boetsap (South Africa). Both cultures were dominated by strains of a new species, designated "Candidatus Manganitrophus morganii." The next most abundant members differed in the available cultures, suggesting that while "Ca. Manganitrophus" species have not been isolated in pure culture, they may not require a specific syntrophic relationship with another species. Phylogeny of cultivated "Ca. Manganitrophus" and related metagenome-assembled genomes revealed a coherent taxonomic family, "Candidatus Manganitrophaceae," from both freshwater and marine environments and distributed globally. Comparative genomic analyses support this family being Mn(II)-oxidizing chemolithoautotrophs. Among the 895 shared genes were a subset of those hypothesized for Mn(II) oxidation (Cyc2 and PCC_1) and oxygen reduction (TO_1 and TO_2) that could facilitate Mn(II) lithotrophy. An unusual, plausibly reverse complex 1 containing 2 additional pumping subunits was also shared by the family, as were genes for the reverse tricarboxylic acid carbon fixation cycle, which could enable Mn(II) autotrophy. All members of the family lacked genes for nitrification found in Nitrospira species. The results suggest that "Ca. Manganitrophaceae" share a core set of candidate genes for the newly discovered manganese-dependent chemolithoautotrophic lifestyle and likely have a broad, global distribution. IMPORTANCE Manganese (Mn) is an abundant redox-active metal that cycles in many of Earth's biomes. While diverse bacteria and archaea have been demonstrated to respire Mn(III/IV), only recently have bacteria been implicated in Mn(II) oxidation-dependent growth. Here, two new Mn(II)-oxidizing enrichment cultures originating from two continents and hemispheres were examined. By comparing the community composition of the enrichments and performing phylogenomic analysis on the abundant Nitrospirota therein, new insights are gleaned on cell interactions, taxonomy, and machineries that may underlie Mn(II)-based lithotrophy and autotrophy.


Asunto(s)
Crecimiento Quimioautotrófico , Manganeso , Bacterias/genética , Agua Dulce , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA