RESUMEN
Manganese (Mn) exists as Mn(II), Mn(III), or Mn(IV) in soils, and the Mn oxidation state controls the roles of Mn in numerous environmental processes. However, the variations of Mn oxidation states with climate remain unknown. We determined the Mn oxidation states in highly weathered bulk volcanic soils (primary minerals free) across two rainfall gradients covering mean annual precipitation (MAP) of 0.25-5 m in the Hawaiian Islands. With increasing MAP, the soil redox conditions generally shifted from oxic to suboxic and to anoxic despite fluctuating at each site; concurrently, the proportions of Mn(IV) and Mn(II) decreased and increased, respectively. Mn(III) was low at both low and high MAP, but accumulated substantially, up to 80% of total Mn, in soils with prevalent suboxic conditions at intermediate MAP. Mn(III) was likely hosted in Mn(III,IV) and iron(III) oxides or complexed with organic matter, and its distribution among these hosts varied with soil redox potentials and soil pH. Soil redox conditions and rainfall-driven leaching jointly controlled exchangeable Mn(II) in soils, with its concentration peaking at intermediate MAP. The Mn redox chemistry was at disequilibrium, with the oxidation states correlating with long-term average soil redox potentials better than with soil pH. The soil redox conditions likely fluctuated between oxic and anoxic conditions more frequently at intermediate than at low and high MAP, creating biogeochemical hot spots where Mn, Fe, and other redox-sensitive elements may be actively cycled.
Asunto(s)
Compuestos Férricos , Manganeso , Manganeso/análisis , Suelo , Hierro , Oxidación-ReducciónRESUMEN
Sequential chemical extraction has been widely used to study soil phosphorus (P) dynamics and inform nutrient management, but its efficacy for assigning P into biologically meaningful pools remains unknown. Here, we evaluated the accuracy of the modified Hedley extraction scheme using P K-edge X-ray absorption near-edge structure (XANES) spectroscopy for nine carbonate-free soil samples with diverse chemical and mineralogical properties resulting from different degrees of soil development. For most samples, the extraction markedly overestimated the pool size of calcium-bound P (Ca-P, extracted by 1 M HCl) due to (1) P redistribution during the alkaline extractions (0.5 M NaHCO3 and then 0.1 M NaOH), creating new Ca-P via formation of Ca phosphates between NaOH-desorbed phosphate and exchangeable Ca2+ and/or (2) dissolution of poorly crystalline Fe and Al oxides by 1 M HCl, releasing P occluded by these oxides into solution. The first mechanism may occur in soils rich in well-crystallized minerals and exchangeable Ca2+ regardless of the presence or absence of CaCO3, whereas the second mechanism likely operates in soils rich in poorly crystalline Fe and Al minerals. The overestimation of Ca-P simultaneously caused underestimation of the pools extracted by the alkaline solutions. Our findings identify key edaphic parameters that remarkably influenced the extractions, which will strengthen our understanding of soil P dynamics using this widely accepted procedure.
Asunto(s)
Contaminantes del Suelo , Suelo , Minerales , Fosfatos , Fósforo , Espectroscopía de Absorción de Rayos XRESUMEN
We evaluated N dynamics on a climate gradient on old (> 4 million year) basaltic substrate on the Island of Kaua'i, Hawai'i, to evaluate the utility of pedogenic thresholds and soil process domains for understanding N cycling in terrestrial ecosystems. Studies of nitrogen dynamics on the climate gradient on a younger basaltic substrate (~ 150,000 year) had found a good match between soil process domains and N cycling processes. Here we measured net N mineralization and nitrification by incubation, and δ15N of total soil N, to determine whether the soil process domains on the older gradient were equally useful for interpreting N cycling and thereby to explore the general utility of the approach. Net N mineralization varied from 0 to 1.7 mg kg-1 d-1 across the old Kaua'i gradient, and δ15N varied from + 3 to + 11 ο/οο, both ranges similar to those on the younger substrate. However, while the pattern of variation with climate was similar for δ15N, the highest rates of mineralization on the old gradient occurred where forests were dominated by the native N fixer Acacia koa. This occurred in sites wetter than the process domain associated with high net N mineralization on the gradient on younger substrate. We conclude that soil process domains based on rock-derived nutrients are not always useful for evaluating N dynamics, especially where the distribution of biological N fixers is controlled by factors other than rock-derived nutrients.
Asunto(s)
Ecosistema , Nitrógeno , Clima , Bosques , SueloRESUMEN
Our understanding of climatic conditions, and therefore forcing factors, in North America during the past two glacial cycles is limited in part by the scarcity of long, well-dated, continuous paleoclimate records. Here, we present the first, to our knowledge, continuous, millennial-resolution paleoclimate proxy record derived from millimeter-thick pedogenic carbonate clast coatings (pedothems), which are widely distributed in semiarid to arid regions worldwide. Our new multiisotope pedothem record from the Wind River Basin in Wyoming confirms a previously hypothesized period of increased transport of Gulf of Mexico moisture northward into the continental interior from 70,000 to 55,000 years ago based on oxygen and carbon isotopes determined by ion microprobe and uranium isotopes and U-Th dating by laser ablation inductively coupled plasma mass spectrometry. This pronounced meridional moisture transport, which contrasts with the dominant zonal transport of Pacific moisture into the North American interior by westerly winds before and after 70,000-55,000 years ago, may have resulted from a persistent anticyclone developed above the North American ice sheet during Marine Isotope Stage 4. We conclude that pedothems, when analyzed using microanalytical techniques, can provide high-resolution paleoclimate records that may open new avenues into understanding past terrestrial climates in regions where paleoclimate records are not otherwise available. When pedothem paleoclimate records are combined with existing records they will add complimentary soil-based perspectives on paleoclimate conditions.
RESUMEN
Many researchers believe that prehistoric Rapa Nui society collapsed because of centuries of unchecked population growth within a fragile environment. Recently, the notion of societal collapse has been questioned with the suggestion that extreme societal and demographic change occurred only after European contact in AD 1722. Establishing the veracity of demographic dynamics has been hindered by the lack of empirical evidence and the inability to establish a precise chronological framework. We use chronometric dates from hydrated obsidian artifacts recovered from habitation sites in regional study areas to evaluate regional land-use within Rapa Nui. The analysis suggests region-specific dynamics including precontact land use decline in some near-coastal and upland areas and postcontact increases and subsequent declines in other coastal locations. These temporal land-use patterns correlate with rainfall variation and soil quality, with poorer environmental locations declining earlier. This analysis confirms that the intensity of land use decreased substantially in some areas of the island before European contact.
Asunto(s)
Agricultura/historia , Antropología Cultural , Dinámica Poblacional/historia , Femenino , Vidrio/análisis , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Humanos , Masculino , PolinesiaRESUMEN
The supply of nitrogen (N) constrains primary productivity in many ecosystems, raising the question "what controls the availability and cycling of N"? As a step toward answering this question, we evaluated N cycling processes and aspects of their regulation on a climate gradient on Kohala Volcano, Hawaii, USA. The gradient extends from sites receiving <300 mm/yr of rain to those receiving >3,000 mm/yr, and the pedology and dynamics of rock-derived nutrients in soils on the gradient are well understood. In particular, there is a soil process domain at intermediate rainfall within which ongoing weathering and biological uplift have enriched total and available pools of rock-derived nutrients substantially; sites at higher rainfall than this domain are acid and infertile as a consequence of depletion of rock-derived nutrients, while sites at lower rainfall are unproductive and subject to wind erosion. We found elevated rates of potential net N mineralization in the domain where rock-derived nutrients are enriched. Higher-rainfall sites have low rates of potential net N mineralization and high rates of microbial N immobilization, despite relatively high rates of gross N mineralization. Lower-rainfall sites have moderately low potential net N mineralization, relatively low rates of gross N mineralization, and rates of microbial N immobilization sufficient to sequester almost all the mineral N produced. Bulk soil δ15 N also varied along the gradient, from +4 at high rainfall sites to +14 at low rainfall sites, indicating differences in the sources and dynamics of soil N. Our analysis shows that there is a strong association between N cycling and soil process domains that are defined using soil characteristics independent of N along this gradient, and that short-term controls of N cycling can be understood in terms of the supply of and demand for N.
Asunto(s)
Clima , Ciclo del Nitrógeno , Hawaii , Nitrógeno , SueloRESUMEN
Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of ecosystem development are not well understood. We examined soil organic matter dynamics and soil development across a high-altitude (3,560-3,030 m) 20-kyr climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected (~250-500 mm rainfall), which range from sparsely vegetated to sites that contain a mix of shrubs and grasses. At each site, two or three pits were dug and major diagnostic horizons down to bedrock (intact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption, and major elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al, and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation. Reactive-phase (SRO) minerals show a general trend of increasing abundance with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20 kyr, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall are severely limited. Carbon storage comparisons with lower-elevation soils on Mauna Kea and other moist mesic (2,500 mm rainfall) sites on Hawaii suggest that these soils have reached only between 1% and 15% of their capacity to retain carbon. Our results suggest that, after 20 kyr in low rainfall and a cold climate, weathering was decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Overall, we conclude that the rate of carbon supply to the subsoil (driven by coupling of rainfall above ground plant production) is a governing factor of forms and amount of soil organic matter accumulation, while soil mineralogy remained relatively uniform.
Asunto(s)
Secuestro de Carbono , Carbono/análisis , Clima , Suelo/química , Ecología , Ecosistema , HawaiiRESUMEN
Dietary deficiency of selenium is a global health threat related to low selenium concentrations in crops. Despite the chemical similarity of selenium to the two more abundantly studied elements sulfur and arsenic, the understanding of its accumulation in soils and availability for plants is limited. The lack of understanding of soil selenium cycling is largely due to the unavailability of methods to characterize selenium species in soils, especially the organic ones. Here we develop a size-resolved multi-elemental method using liquid chromatography and elemental mass spectrometry, which enables an advanced characterization of selenium, sulfur, and arsenic species in soil extracts. We apply the analytical approach to soils sampled along the Kohala rainfall gradient on Big Island (Hawaii), which cover a large range of organic carbon and (oxy)hydroxides contents. Similarly to sulfur but contrarily to arsenic, a large fraction of selenium is found associated with organic matter in these soils. However, while sulfur and arsenic are predominantly found as oxyanions in water extracts, selenium mainly exists as small hydrophilic organic compounds. Combining Kohala soil speciation data with concentrations in parent rock and plants further suggests that selenium association with organic matter limits its mobility in soils and availability for plants.
Asunto(s)
Arsénico , Selenio , Contaminantes del Suelo , Suelo/química , Selenio/química , Disponibilidad Biológica , Arsénico/análisis , Contaminantes del Suelo/análisis , AzufreRESUMEN
Silicon has a crucial role in many biogeochemical processes--for example, as a nutrient for marine and terrestrial biota, in buffering soil acidification and in the regulation of atmospheric carbon dioxide. Traditionally, silica fluxes to soil solutions and stream waters are thought to be controlled by the weathering and subsequent dissolution of silicate minerals. Rates of mineral dissolution can be enhanced by biological processes. But plants also take up considerable quantities of silica from soil solution, which is recycled into the soil from falling litter in a separate soil-plant silica cycle that can be significant in comparison with weathering input and hydrologic output. Here we analyse soil water in basaltic soils across the Hawaiian islands to assess the relative contributions of weathering and biogenic silica cycling by using the distinct signatures of the two processes in germanium/silicon ratios. Our data imply that most of the silica released to Hawaiian stream water has passed through the biogenic silica pool, whereas direct mineral-water reactions account for a smaller fraction of the stream silica flux. We expect that other systems exhibiting strong Si depletion of the mineral soils and/or high Si uptake rates by biomass will also have strong biological control on silica cycling and export.
Asunto(s)
Agua Dulce/química , Dióxido de Silicio/metabolismo , Suelo/análisis , Biomasa , Germanio/análisis , Hawaii , Plantas/metabolismo , Silicio/análisis , Dióxido de Silicio/análisis , Tiempo (Meteorología)RESUMEN
Nutrient limitation to primary productivity and other biological processes is widespread in terrestrial ecosystems, and nitrogen (N) and phosphorus (P) are the most common limiting elements, both individually and in combination. Mechanisms that drive P limitation, and their interactions with the N cycle, have received less attention than mechanisms causing N limitation. We identify and discuss six mechanisms that could drive P limitation in terrestrial ecosystems. The best known of these is depletion-driven limitation, in which accumulated P losses during long-term soil and ecosystem development contribute to what Walker and Syers termed a "terminal steady state" of profound P depletion and limitation. The other mechanisms are soil barriers that prevent access to P; transactional limitation, in which weathering of P-containing minerals does not keep pace with the supply of other resources; low-P parent materials; P sinks; and anthropogenic changes that increase the supply of other resources (often N) relative to P. We distinguish proximate nutrient limitation (which occurs where additions of a nutrient stimulate biological processes, especially productivity) from ultimate nutrient limitation (where additions of a nutrient can transform ecosystems). Of the mechanisms that drive P limitation, we suggest that depletion, soil barriers, and low-P parent material often cause ultimate limitation because they control the ecosystem mass balance of P. Similarly, demand-independent losses and constraints to N fixation can control the ecosystem-level mass balance of N and cause it to be an ultimate limiting nutrient.
Asunto(s)
Ecosistema , Nitrógeno/química , Nitrógeno/metabolismo , Fósforo/química , Fósforo/metabolismo , Cambio Climático , Fijación del NitrógenoRESUMEN
Plants and soils represent coevolving components of ecosystems, and while the effects of soils (e.g., nutrient availability) on plants have been extensively documented, the effect of plants on soils has received less attention. Furthermore there has been no systematic investigation of how plant effects vary across important ecological gradients in climate or soil age, which leaves a substantial gap in our understanding of how plant-soil systems develop. In this context, we analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 35 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (ages 10, 170, and 350 kyr) each of which crosses a precipitation gradient from approximately 500 to 2500 mm/yr. By comparing the loss of nutrient (potassium, phosphorus) and non-nutrient (e.g., sodium) rock-derived elements, we identify a climatic zone at intermediate rainfall where the retention of plant nutrients in the upper soil is most pronounced. We further show that there are several abiotic constraints on plant-driven retention of nutrients. At the dry sites (< or = 750 mm/yr on all three flows), plants slow the loss of nutrients, but the effect (as measured by the difference between K and Na losses) is small, perhaps because of low plant cover and productivity. At intermediate rainfall (750-1400 mm/yr) but negative water balance, plants substantially enrich both nutrient cations and P relative to Na in the surface horizons, an effect that remains strong even after 350 kyr of soil development. In contrast, at high rainfall (> or = 1500 mm/yr) and positive water balance, the effect of plants on nutrient distributions diminishes with soil age as leaching losses overwhelm the uplift and retention of nutrients by plants after 350 kyr of soil development. The effect of plants on soil nutrient distributions can also be mediated by the movement of iron (Fe), and substantial Fe losses at high rainfall on the older flows are highly correlated with P losses. Thus redox-driven redistribution of Fe may place a further abiotic constraint on nutrient retention by plants. In combination, these data indicate that the effects of soil aging on plant uplift and retention of nutrients differ markedly with precipitation, and we view this as a potentially fruitful area for future research.
Asunto(s)
Clima , Ecosistema , Fenómenos Fisiológicos de las Plantas , Suelo/análisis , Erupciones Volcánicas , Biomasa , Hawaii , Nitrógeno/análisis , Nitrógeno/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Desarrollo de la Planta , Plantas/metabolismo , Potasio/análisis , Potasio/metabolismo , Lluvia , Suelo/normasRESUMEN
We compared forest canopy heights and nitrogen concentrations in long-term research sites and in 2 x 2 km landscapes surrounding these sites along a substrate age gradient in the Hawaiian Islands. Both remote airborne and ground-based measurements were used to characterize processes that control landscape-level variation in canopy properties. We integrated a waveform light detection and ranging (LiDAR) system, a high-resolution imaging spectrometer, and a global positioning system/inertial measurement unit to provide highly resolved images of ground topography, canopy heights, and canopy nitrogen concentrations (1) within a circle 50 m in radius focused on a long-term study site in the center of each landscape; (2) for the entire 2 x 2 km landscape regardless of land cover; and (3) after stratification, for our target cover class, native-dominated vegetation on constructional geomorphic surfaces throughout each landscape. Remote measurements at all scales yielded the same overall patterns as did ground-based measurements in the long-term sites. The two younger landscapes supported taller trees than did older landscapes, while the two intermediate-aged landscapes had higher canopy nitrogen (N) concentrations than did either young or old landscapes. However, aircraft-based analyses detected substantial variability in canopy characteristics on the landscape level, even within the target cover class. Canopy heights were more heterogeneous on the older landscapes, with coefficients of variation increasing from 23-41% to 69-78% with increasing substrate age. This increasing heterogeneity was associated with a larger patch size of canopy turnover and with dominance of most secondary successional stands by the mat-forming fern Dicranopteris linearis in the older landscapes.
Asunto(s)
Ecosistema , Árboles , Helechos/metabolismo , Hawaii , Nitrógeno/análisis , Nitrógeno/metabolismo , Factores de Tiempo , Árboles/fisiologíaRESUMEN
Prior to European contact in 1778, Hawaiians developed intensive irrigated pondfield agricultural systems in windward Kohala, Hawai'i. We evaluated three potential sources of nutrients to windward systems that could have sustained intensive agriculture: (1) in situ weathering of primary and secondary minerals in upland soils; (2) rejuvenation of the supply of rock-derived nutrients on eroded slopes and in alluvium; and (3) transport of rock-derived nutrients to crops via irrigation water. Our results show that most windward soils are infertile and suggest that weathering of minerals within upland soils was insufficient to sustain intensive agriculture without substantial cultural inputs. Erosion enhances weathering and so increases nutrient supply, with soils of the largest alluvial valleys (>200 m deep) retaining 37% of calcium from parent material (compared to 2% in upland sites). However, soils of smaller valleys that also supported pre-contact agricultural systems are substantially less enriched. Isotopic 87Sr/86Sr analyses of stream water demonstrate that at low to moderate stream flow over 90% of dissolved strontium derives from weathering of basalt rather than deposition of atmospheric sources; most other dissolved cations also derive from basalt weathering. We calculate that irrigation water could have supplied approximately 200 kg ha(-1) yr(-1) of calcium to pondfield systems, nearly 100 times more than was supplied by weathering in soils on stable geomorphic surfaces. In effect, irrigation waters brought nutrients from rocks to the windward crops.
Asunto(s)
Agricultura/historia , Suelo/análisis , Hawaii , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia Medieval , Lluvia , Movimientos del Agua , VientoRESUMEN
Pedogenic thresholds describe where soil properties or processes change in an abrupt/nonlinear fashion in response to small changes in environmental forcing. Contrastingly, soil process domains refer to the space between thresholds where soil properties are either unchanged, or change gradually, across a broad range of environmental forcing. Here, we test quantitatively for the presence of thresholds in patterns of soil properties across a climatic gradient on soils developed from ~20 ky old basaltic substrate on the Island of Hawai'i. From multiple soil properties, we quantitatively identified a threshold at ~750 mm/y of water balance (precipitation minus potential evapotranspiration), delineating the upper water balance boundary of soil fertility in these soils. From the threshold in the ratio of exchangeable Ca to total Ca we identified the lower water balance boundary of soil fertility in these soils at -1000 mm/y, however this threshold was qualitatively described as it lies near the limit of the climate gradient data where the statistical approach can not be applied. These two results represent the first time that pedogenic thresholds have been identified using statistically rigorous methods and the limitations of said methods, respectively. Comparing the 20 ky soils to soils that developed on basaltic substrates of 1.2 ky, 7.5 ky, 150 ky, and 4100 ky in a time-climate matrix, we found that our quantitative analysis supports previous qualitatively identified thresholds in the soils developed from older substrates. We also identified the 20 ky as the transition from kinetic to supply limitation for plant nutrients in soil in this system.
RESUMEN
Current understanding of phosphorus (P) cycling in soils can be enhanced by integrating previously discrete findings concerning P speciation, exchange kinetics, and the underlying biological and geochemical processes. Here, we combine sequential extraction with P K-edge X-ray absorption spectroscopy and isotopic methods (33P and 18O in phosphate) to characterize P cycling on a climatic gradient in Hawaii. We link P pools to P species and estimate the turnover times for commonly considered P pools. Dissolved P turned over in seconds, resin-extractable P in minutes, NaOH-extractable inorganic P in weeks to months, and HCl-extractable P in years to millennia. Furthermore, we show that in arid-zone soils, some primary mineral P remains even after 150 ky of soil development, whereas in humid-zone soils of the same age, all P in all pools has been biologically cycled. The integrative information we provide makes possible a more dynamic, process-oriented conceptual model of P cycling in soils.
RESUMEN
Changes in species richness along climatological gradients have been instrumental in developing theories about the general drivers of biodiversity. Previous studies on microbial communities along climate gradients on mountainsides have revealed positive, negative and neutral richness trends. We examined changes in richness and composition of Fungi, Bacteria and Archaea in soil along a 50-1000 m elevation, 280-3280 mm/yr precipitation gradient in Hawai'i. Soil properties and their drivers are exceptionally well understood along this gradient. All three microbial groups responded strongly to the gradient, with community ordinations being similar along axes of environmental conditions (pH, rainfall) and resource availability (nitrogen, phosphorus). However, the form of the richness-climate relationship varied between Fungi (positive linear), Bacteria (unimodal) and Archaea (negative linear). These differences were related to resource-ecology and limiting conditions for each group, with fungal richness increasing most strongly with soil carbon, ammonia-oxidizing Archaea increasing with nitrogen mineralization rate, and Bacteria increasing with both carbon and pH. Reponses to the gradient became increasingly variable at finer taxonomic scales and within any taxonomic group most individual OTUs occurred in narrow climate-elevation ranges. These results show that microbial responses to climate gradients are heterogeneous due to complexity of underlying environmental changes and the diverse ecologies of microbial taxa.
Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Hongos/clasificación , Consorcios Microbianos/fisiología , Suelo/química , Amoníaco/análisis , Archaea/genética , Bacterias/genética , Biodiversidad , Carbono/análisis , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Nitrógeno/análisis , Fósforo/análisis , Microbiología del Suelo , Clima TropicalRESUMEN
Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ(34)S VCDT) of -0.8. Bulk deposition on the island of Maui had a δ(34)S VCDT that varied temporally, spanned a range from +8.2 to +19.7, and reflected isotopic mixing from three sources: sea-salt (+21.1), marine biogenic emissions (+15.6), and volcanic emissions from active vents on Kilauea Volcano (+0.8). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to +2.7) to relatively high (+17.8 to +19.3) soil δ(34)S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from +8.1 to +20.3 and generally decreased with increasing elevation (0-2000 m), distance from the coast (0-12 km), and annual rainfall (180-5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over ecosystem sulfur biogeochemistry across relatively small spatial scales.
RESUMEN
We used measurements from airborne imaging spectroscopy and LiDAR to quantify the biophysical structure and composition of vegetation on a dryland substrate age gradient in Hawaii. Both vertical stature and species composition changed during primary succession, and reveal a progressive increase in vertical stature on younger substrates followed by a collapse on Pleistocene-aged flows. Tall-stature Metrosideros polymorpha woodlands dominated on the youngest substrates (hundreds of years), and were replaced by the tall-stature endemic tree species Myoporum sandwicense and Sophora chrysophylla on intermediate-aged flows (thousands of years). The oldest substrates (tens of thousands of years) were dominated by the short-stature native shrub Dodonaea viscosa and endemic grass Eragrostis atropioides. We excavated 18 macroscopic charcoal fragments from Pleistocene-aged substrates. Mean radiocarbon age was 2,002 years and ranged from < 200 to 7,730. Genus identities from four fragments indicate that Osteomeles spp. or M. polymorpha once occupied the Pleistocene-aged substrates, but neither of these species is found there today. These findings indicate the existence of fires before humans are known to have occupied the Hawaiian archipelago, and demonstrate that a collapse in vertical stature is prevalent on the oldest substrates. This work contributes to our understanding of prehistoric fires in shaping the trajectory of primary succession in Hawaiian drylands.
Asunto(s)
Ecosistema , HawaiiRESUMEN
We used isotopes of Sr to quantify weathering versus atmospheric sources of foliar Sr in 34 Hawaiian forests on young volcanic soils. The forests varied widely in climate, and in lava flow age and texture. Weathering supplied most of the Sr in most of the sites, but atmospheric deposition contributed 30-50% of foliar Sr in the wettest rainforests. A stepwise multiple regression using annual precipitation, distance from the ocean, and texture of the underlying lava explained 76% of the variation in Sr isotope ratios across the sites. Substrate age did not contribute significantly to variation in Sr isotope ratios in the range of ages evaluated here (11-3000 years), although atmospheric sources eventually dominate pools of biologically available Sr in Hawaiian rainforests in older substrates (≥150,000 years).
RESUMEN
Global vegetation models predict the spread of woody vegetation in African savannas and grasslands under future climate scenarios, but they operate too broadly to consider hillslope-scale variations in tree-grass distribution. Topographically linked hydrology-soil-vegetation sequences, or catenas, underpin a variety of ecological processes in savannas, including responses to climate change. In this study, we explore the three-dimensional structure of hillslopes and vegetation, using high-resolution airborne LiDAR (Light Detection And Ranging), to understand the long-term effects of mean annual precipitation (MAP) on catena pattern. Our results reveal that the presence and position of hillslope hydrological boundaries, or seeplines, vary as a function of MAP through its long-term influence on clay redistribution. We suggest that changes in climate will differentially alter the structure of savannas through hydrological changes to the seasonally saturated grasslands downslope of seeplines. The mechanisms underlying future woody encroachment are not simply physiological responses to elevated temperatures and CO(2) levels but also involve hydrogeomorphological processes at the hillslope scale.