Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Crit Rev Biochem Mol Biol ; 46(2): 118-36, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21261459

RESUMEN

The ubiquitin-proteasome protein degradation system is involved in many essential cellular processes including cell cycle regulation, cell differentiation, and the unfolded protein response. The anaphase-promoting complex/cyclosome (APC/C), an evolutionarily conserved E3 ubiquitin ligase, was discovered 15 years ago because of its pivotal role in cyclin degradation and mitotic progression. Since then, we have learned that the APC/C is a very large, complex E3 ligase composed of 13 subunits, yielding a molecular machine of approximately 1 MDa. The intricate regulation of the APC/C is mediated by the Cdc20 family of activators, pseudosubstrate inhibitors, protein kinases and phosphatases and the spindle assembly checkpoint. The large size, complexity, and dynamic nature of the APC/C represent significant obstacles toward high-resolution structural techniques; however, over the last decade, there have been a number of lower resolution APC/C structures determined using single particle electron microscopy. These structures, when combined with data generated from numerous genetic and biochemical studies, have begun to shed light on how APC/C activity is regulated. Here, we discuss the most recent developments in the APC/C field concerning structure, substrate recognition, and catalysis.


Asunto(s)
Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Catálisis , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Humanos , Meiosis , Microscopía Electrónica , Mitosis , Modelos Biológicos , Huso Acromático/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
2.
Nucleic Acids Res ; 38(17): 5944-57, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20462860

RESUMEN

The Central glycolytic genes Repressor (CggR) from Bacillus subtilis belongs to the SorC family of transcription factors that control major carbohydrate metabolic pathways. Recent studies have shown that CggR binds as a tetramer to its tandem operator DNA sequences and that the inducer metabolite, fructose 1,6-bisphosphate (FBP), reduces the binding cooperativity of the CggR/DNA complex. Here, we have determined the effect of FBP on the size, shape and stoichiometry of CggR complexes with full-length and half-site operator sequence by small-angle X-ray scattering, size-exclusion chromatography, fluorescence cross-correlation spectroscopy and noncovalent mass spectrometry (MS). Our results show that CggR forms a compact tetrameric assembly upon binding to either the full-length operator or two half-site DNAs and that FBP triggers a tetramer-dimer transition that leaves a single dimer on the half-site or two physically independent dimers on the full-length target. Although the binding of other phospho-sugars was evidenced by MS, only FBP was found to completely disrupt dimer-dimer contacts. We conclude that inducer-dependent dimer-dimer bridging interactions constitute the physical basis for CggR cooperative binding to DNA and the underlying repression mechanism. This work provides experimental evidences for a cooperativity-based regulation model that should apply to other SorC family members.


Asunto(s)
ADN Bacteriano/química , Proteínas Represoras/química , Carbohidratos/química , Cromatografía en Gel , Espectrometría de Masas , Modelos Moleculares , Regiones Operadoras Genéticas , Dispersión del Ángulo Pequeño , Espectrometría de Fluorescencia , Difracción de Rayos X
3.
Proc Natl Acad Sci U S A ; 104(47): 18490-5, 2007 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-17998541

RESUMEN

Gram-positive bacteria use a wealth of extracellular signaling peptides, so-called autoinducers, to regulate gene expression according to population densities. These "quorum sensing" systems control vital processes such as virulence, sporulation, and gene transfer. Using x-ray analysis, we determined the structure of PlcR, the major virulence regulator of the Bacillus cereus group, and obtained mechanistic insights into the effects of autoinducer binding. Our structural and phylogenetic analysis further suggests that all of those quorum sensors that bind directly to their autoinducer peptide derive from a common ancestor and form a single family (the RNPP family, for Rap/NprR/PlcR/PrgX) with conserved features. As a consequence, fundamentally different processes in different bacterial genera appear regulated by essentially the same autoinducer recognition mechanism. Our results shed light on virulence control by PlcR and elucidate origin and evolution of multicellular behavior in bacteria.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Evolución Molecular , Bacterias Grampositivas/metabolismo , Bacterias Grampositivas/patogenicidad , Percepción de Quorum , Transactivadores/química , Transactivadores/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Bacterias Grampositivas/química , Bacterias Grampositivas/genética , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Transactivadores/clasificación , Transactivadores/genética , Virulencia
4.
Biophys J ; 95(9): 4403-15, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18658229

RESUMEN

Determination of the physical parameters underlying protein-DNA interactions is crucial for understanding the regulation of gene expression. In particular, knowledge of the stoichiometry of the complexes is a prerequisite to determining their energetics and functional molecular mechanisms. However, the experimental determination of protein-DNA complex stoichiometries remains challenging. We used fluorescence cross-correlation spectroscopy (FCCS) to investigate the interactions of the control catabolite protein of gluconeogenic genes, a key metabolic regulator in Gram-positive bacteria, with two oligonucleotides derived from its target operator sequences, gapB and pckA. According to our FCCS experiments, the stoichiometry of binding is twofold larger for the pckA target than for gapB. Correcting the FCCS data for protein self-association indicated that control catabolite protein of gluconeogenic genes forms dimeric complexes on the gapB target and tetrameric complexes on the pckA target. Analytical ultracentrifugation coupled with fluorescence anisotropy and hydrodynamic modeling allowed unambiguous confirmation of this result. The use of multiple complementary techniques to characterize these complexes should be employed wherever possible. However, there are cases in which analytical ultracentrifugation is precluded, due to protein stability, solubility, or availability, or, more obviously, when the studies are carried out in live cells. If information concerning the self-association of the protein is available, FCCS can be used for the direct and simultaneous determination of the affinity, cooperativity, and stoichiometry of protein-DNA complexes in a concentration range and conditions relevant to the regulation of these interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Gluconeogénesis/genética , Proteínas Represoras/metabolismo , Área Bajo la Curva , Proteínas Bacterianas/química , Fenómenos Biofísicos , Color , Colorantes/metabolismo , Proteínas de Unión al ADN/química , Oligonucleótidos/metabolismo , Fotones , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/química , Espectrometría de Fluorescencia , Coloración y Etiquetado , Volumetría
5.
Proteins ; 71(4): 2038-50, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18186488

RESUMEN

CggR belongs to the SorC family of bacterial transcriptional regulators which control the expression of genes and operons involved in carbohydrate catabolism. CggR was first identified in Bacillus subtilis where it represses the gapA operon encoding the five enzymes that catalyze the central part of glycolysis. Here we present a structure/function study demonstrating that the C-terminal region of CggR regulates the DNA binding activity of this repressor in response to binding of a phosphorylated sugar. Molecular modeling of CggR revealed a winged-helix DNA-binding motif followed by a C-terminal domain presenting weak but significant homology with glucosamine-6-phosphate deaminases from the NagB family. In silico ligand screening suggested that the CggR C-terminal domain would bind preferentially bi-phosphorylated compounds, in agreement with previous studies that proposed fructuose-1,6-biphosphate (FBP) as the inducer metabolite. In vitro, FBP was the only sugar compound capable of interfering with CggR cooperative binding to DNA. FBP was also found to protect CggR against trypsin degradation at two arginine residues predicted to reside in a mobile loop forming the active site lid of the NagB enzymes. Replacement of residues predicted to interact with FBP led to mutant CggR with altered repressor activity in vivo but retaining their structural integrity and DNA binding activity in vitro. Interestingly, some of the mutant repressors responded with different specificity towards mono- and di-phospho-fructosides. Based on these results, we propose that the activity of the CggR-like repressors is controlled by a phospho-sugar binding (PSB) domain presenting structural and functional homology with NagB enzymes.


Asunto(s)
Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Isomerasas Aldosa-Cetosa/química , Secuencia de Aminoácidos , Bacillus subtilis/metabolismo , Sitios de Unión , Dicroismo Circular , Simulación por Computador , Secuencia Conservada , Cristalografía por Rayos X , Bases de Datos Factuales , Escherichia coli/genética , Polarización de Fluorescencia , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Operón , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras/aislamiento & purificación , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Relación Estructura-Actividad
6.
Ann N Y Acad Sci ; 1130: 44-51, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18596330

RESUMEN

Gene expression regulation, in particular at the level of transcription, has been demonstrated to play a key role in the development of human diseases, including cancer, and in bacteria it is crucial for proliferation as well as for pathogenicity. Transcriptional regulation is based on complex networks of interactions, including those of the regulatory proteins with the operator DNAs, which are further modulated by ligands. Thus, understanding transcriptional regulation mechanisms requires a thorough analysis of the physical parameters underlying the interactions involved. Among the panoply of methods available, fluorescence spectroscopy-based approaches have been widely used for the assessment of the thermodynamics and structural dynamics of biomolecular interactions. Here we will discuss the application of three fluorescence spectroscopy methods--fluorescence anisotropy and fluorescence correlation and cross-correlation spectroscopy--for the investigation of protein-DNA, protein-protein, and protein-ligand interactions. The weaknesses and the strengths of each method will be highlighted on the basis of our experience in the analysis of the interactions of bacterial repressors implicated in transcriptional regulation in bacilli.


Asunto(s)
Espectrometría de Fluorescencia/métodos , Transcripción Genética , Anisotropía , Bacillus subtilis/genética , Carbohidratos/química , ADN/química , Regulación Bacteriana de la Expresión Génica , Ligandos , Modelos Biológicos , Unión Proteica , Mapeo de Interacción de Proteínas , Espectrometría de Fluorescencia/instrumentación , Factores de Transcripción
7.
Biochemistry ; 46(51): 14996-5008, 2007 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-18052209

RESUMEN

CggR is the transcriptional repressor of the gapA operon encoding central glycolytic enzymes in Bacillus subtilis. Recently, a detailed mechanistic characterization of gapA induction revealed that the binding of fructose-1,6-bisphosphate (FBP) to a low affinity site on CggR (Kd > 100 microM) is responsible for repressor release from the DNA. In addition, this prior work demonstrated that FBP binds to a second high affinity site on the repressor, causing a conformational change in the CggR/DNA complexes, but with no consequence on CggR affinity for its operator DNA. In the present study we have thoroughly analyzed the structural and thermodynamic consequences of FBP binding to CggR. Results of fluorescence anisotropy titrations, calorimetry and limited proteolysis confirm the existence in CggR of a high affinity site for FBP, with a Kd of around 6 microM. Using analytical size-exclusion chromatography, ultracentrifugation as well as fluorescence correlation spectroscopy (FCS) and pressure perturbation, we show that FBP binding at this site reduces the size of the CggR oligomers and induces conformational changes that stabilize the dimer against denaturation. Hence, FBP has a dual role on CggR structure and regulatory function. In addition to acting as an inducer of transcription at the low affinity site, FBP bound to the high affinity site acts as a structural cofactor for the repressor, with profound effects on its quaternary structure as well as on its conformational dynamics and stability. This high affinity FBP site apparently evolved from the sugar substrate binding site of homologous enzymes.


Asunto(s)
Fructosadifosfatos/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Dimerización , Ligandos , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA