Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 14(8): e1007574, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30074984

RESUMEN

The broadly conserved bacterial signalling molecule cyclic-di-adenosine monophosphate (c-di-AMP) controls osmoresistance via its regulation of potassium (K+) and compatible solute uptake. High levels of c-di-AMP resulting from inactivation of c-di-AMP phosphodiesterase activity leads to poor growth of bacteria under high osmotic conditions. To better understand how bacteria can adjust in response to excessive c-di-AMP levels and to identify signals that feed into the c-di-AMP network, we characterised genes identified in a screen for osmoresistant suppressor mutants of the high c-di-AMP Lactococcus ΔgdpP strain. Mutations were identified which increased the uptake of osmoprotectants, including gain-of-function mutations in a Kup family K+ importer (KupB) and inactivation of the glycine betaine transporter transcriptional repressor BusR. The KupB mutations increased the intracellular K+ level while BusR inactivation increased the glycine betaine level. In addition, BusR was found to directly bind c-di-AMP and repress expression of the glycine betaine transporter in response to elevated c-di-AMP. Interestingly, overactive KupB activity or loss of BusR triggered c-di-AMP accumulation, suggesting turgor pressure changes act as a signal for this second messenger. In another group of suppressors, overexpression of an operon encoding an EmrB family multidrug resistance protein allowed cells to lower their intracellular level of c-di-AMP through active export. Lastly evidence is provided that c-di-AMP levels in several bacteria are rapidly responsive to environmental osmolarity changes. Taken together, this work provides evidence for a model in which high c-di-AMP containing cells are dehydrated due to lower K+ and compatible solute levels and that this osmoregulation system is able to sense and respond to cellular water stress.


Asunto(s)
Proteínas Bacterianas/fisiología , Betaína/metabolismo , AMP Cíclico/metabolismo , Lactococcus lactis/fisiología , Osmorregulación , Potasio/metabolismo , Adenosina Monofosfato , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/genética , Mutación , Operón , Concentración Osmolar , Sistemas de Mensajero Secundario
2.
Mol Microbiol ; 99(6): 1015-27, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26585449

RESUMEN

The second messenger cyclic-di-adenosine monophosphate (c-di-AMP) plays important roles in growth, virulence, cell wall homeostasis, potassium transport and affects resistance to antibiotics, heat and osmotic stress. Most Firmicutes contain only one c-di-AMP synthesizing diadenylate cyclase (CdaA); however, little is known about signals and effectors controlling CdaA activity and c-di-AMP levels. In this study, a genetic screen was employed to identify components which affect the c-di-AMP level in Lactococcus. We characterized suppressor mutations that restored osmoresistance to spontaneous c-di-AMP phosphodiesterase gdpP mutants, which contain high c-di-AMP levels. Loss-of-function and gain-of-function mutations were identified in the cdaA and gdpP genes, respectively, which led to lower c-di-AMP levels. A mutation was also identified in the phosphoglucosamine mutase gene glmM, which is commonly located within the cdaA operon in bacteria. The glmM I154F mutation resulted in a lowering of the c-di-AMP level and a reduction in the key peptidoglycan precursor UDP-N-acetylglucosamine in L. lactis. C-di-AMP synthesis by CdaA was shown to be inhibited by GlmM(I154F) more than GlmM and GlmM(I154F) was found to bind more strongly to CdaA than GlmM. These findings identify GlmM as a c-di-AMP level modulating protein and provide a direct connection between c-di-AMP synthesis and peptidoglycan biosynthesis.


Asunto(s)
Adenilil Ciclasas/metabolismo , Fosfatos de Dinucleósidos/biosíntesis , Lactococcus lactis/metabolismo , Fosfoglucomutasa/metabolismo , Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , AMP Cíclico/metabolismo , Lactococcus lactis/enzimología , Peptidoglicano/biosíntesis , Peptidoglicano/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Sistemas de Mensajero Secundario
3.
BMC Genomics ; 17(1): 633, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27527502

RESUMEN

BACKGROUND: Aspergillus westerdijkiae produces ochratoxin A (OTA) in Aspergillus section Circumdati. It is responsible for the contamination of agricultural crops, fruits, and food commodities, as its secondary metabolite OTA poses a potential threat to animals and humans. As a member of the filamentous fungi family, its capacity for enzymatic catalysis and secondary metabolite production is valuable in industrial production and medicine. To understand the genetic factors underlying its pathogenicity, enzymatic degradation, and secondary metabolism, we analysed the whole genome of A. westerdijkiae and compared it with eight other sequenced Aspergillus species. RESULTS: We sequenced the complete genome of A. westerdijkiae and assembled approximately 36 Mb of its genomic DNA, in which we identified 10,861 putative protein-coding genes. We constructed a phylogenetic tree of A. westerdijkiae and eight other sequenced Aspergillus species and found that the sister group of A. westerdijkiae was the A. oryzae - A. flavus clade. By searching the associated databases, we identified 716 cytochrome P450 enzymes, 633 carbohydrate-active enzymes, and 377 proteases. By combining comparative analysis with Kyoto Encyclopaedia of Genes and Genomes (KEGG), Conserved Domains Database (CDD), and Pfam annotations, we predicted 228 potential carbohydrate-active enzymes related to plant polysaccharide degradation (PPD). We found a large number of secondary biosynthetic gene clusters, which suggested that A. westerdijkiae had a remarkable capacity to produce secondary metabolites. Furthermore, we obtained two more reliable and integrated gene sequences containing the reported portions of OTA biosynthesis and identified their respective secondary metabolite clusters. We also systematically annotated these two hybrid t1pks-nrps gene clusters involved in OTA biosynthesis. These two clusters were separate in the genome, and one of them encoded a couple of GH3 and AA3 enzyme genes involved in sucrose and glucose metabolism. CONCLUSIONS: The genomic information obtained in this study is valuable for understanding the life cycle and pathogenicity of A. westerdijkiae. We identified numerous enzyme genes that are potentially involved in host invasion and pathogenicity, and we provided a preliminary prediction for each putative secondary metabolite (SM) gene cluster. In particular, for the OTA-related SM gene clusters, we delivered their components with domain and pathway annotations. This study sets the stage for experimental verification of the biosynthetic and regulatory mechanisms of OTA and for the discovery of new secondary metabolites.


Asunto(s)
Aspergillus/genética , Genoma Fúngico , Aspergillus/clasificación , Aspergillus/metabolismo , Hibridación Genómica Comparativa , Bases de Datos Genéticas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Anotación de Secuencia Molecular , Familia de Multigenes , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Filogenia , Virulencia/genética
4.
Genome Announc ; 4(4)2016 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-27445366

RESUMEN

The draft genome sequence of Nocardia jinanensis, an opportunistic pathogen that can cause skin infections, reveals genes that may contribute to the lifestyle and pathogenicity of N. jinanensis The genome also reveals the biosynthetic capacity of N. jinanensis in producing mycolic acids, siderophores, and other polyketide and nonribosomal peptide-derived secondary metabolites.

5.
Genome Announc ; 4(5)2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27635003

RESUMEN

Ochratoxin A (OTA) is a common mycotoxin that contaminates food and agricultural products. Sequencing of the complete genome of Aspergillus westerdijkiae, a major producer of OTA, reveals more than 50 biosynthetic gene clusters, including a putative OTA biosynthetic gene cluster that encodes a dozen of enzymes, transporters, and regulatory proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA