Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 116(14): 143005, 2016 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-27104705

RESUMEN

The double ionization of helium in bichromatic, circularly polarized intense laser fields is analyzed with a classical ensemble approach. It is found that counterrotating fields produce significant nonsequential double-ion yield and drive novel ionization dynamics. It is shown that distinct pathways to ionization can be modified by altering the relative intensities of the two colors, allowing for unique control of strong-field processes. Electrons are observed to return to the ion at different angles from the angle of ionization, opening new possibilities for probing electronic and molecular structure on the ultrafast time scale.

2.
Phys Rev Lett ; 117(13): 133201, 2016 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-27715086

RESUMEN

Atoms undergoing strong-field ionization in two-color circularly polarized femtosecond laser fields exhibit unique two-dimensional photoelectron trajectories and can emit bright circularly polarized extreme ultraviolet and soft-x-ray beams. In this Letter, we present the first experimental observation of nonsequential double ionization in these tailored laser fields. Moreover, we can enhance or suppress nonsequential double ionization by changing the intensity ratio and helicity of the two driving laser fields to maximize or minimize high-energy electron-ion rescattering. Our experimental results are explained through classical simulations, which also provide insight into how to optimize the generation of circularly polarized high harmonic beams.

3.
Opt Express ; 22(7): 8041-6, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24718179

RESUMEN

The traditional arrangement for visualizing optical phenomena with the schlieren technique is modified to include a Mach-Zehnder geometry. This allows for the implementation of two independent knife edges along two different beam paths, resulting in an enhanced combined image that is uniquely adjustable. Post-processed combined images are also generated by spatially separating the paths from each arm and then colorizing and combining the images into a single composite. In this way, bidirectional, color schlieren images have been produced using both white-light and monochromatic sources.

4.
Appl Opt ; 51(18): 4103-8, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22722286

RESUMEN

We present a unique method for experimentally generating multiple vortices by way of a devil's vortex lens combined with a Fresnel lens using a spatial light modulator. These lenses have the multifocal properties of fractal zone plates combined with the orbital angular momentum of a spiral phase plate and can be tailored to fit within a small space on an optical bench. Results are presented alongside numerical simulations, demonstrating the robust nature of both the experimental method and the predictive power of the Huygens-Fresnel wavelet theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA