Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nature ; 615(7953): 678-686, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922586

RESUMEN

Dengue is a major health threat and the number of symptomatic infections caused by the four dengue serotypes is estimated to be 96 million1 with annually around 10,000 deaths2. However, no antiviral drugs are available for the treatment or prophylaxis of dengue. We recently described the interaction between non-structural proteins NS3 and NS4B as a promising target for the development of pan-serotype dengue virus (DENV) inhibitors3. Here we present JNJ-1802-a highly potent DENV inhibitor that blocks the NS3-NS4B interaction within the viral replication complex. JNJ-1802 exerts picomolar to low nanomolar in vitro antiviral activity, a high barrier to resistance and potent in vivo efficacy in mice against infection with any of the four DENV serotypes. Finally, we demonstrate that the small-molecule inhibitor JNJ-1802 is highly effective against viral infection with DENV-1 or DENV-2 in non-human primates. JNJ-1802 has successfully completed a phase I first-in-human clinical study in healthy volunteers and was found to be safe and well tolerated4. These findings support the further clinical development of JNJ-1802, a first-in-class antiviral agent against dengue, which is now progressing in clinical studies for the prevention and treatment of dengue.


Asunto(s)
Antivirales , Virus del Dengue , Dengue , Primates , Proteínas no Estructurales Virales , Animales , Humanos , Ratones , Antivirales/efectos adversos , Antivirales/farmacología , Antivirales/uso terapéutico , Ensayos Clínicos Fase I como Asunto , Dengue/tratamiento farmacológico , Dengue/prevención & control , Dengue/virología , Virus del Dengue/clasificación , Virus del Dengue/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Farmacorresistencia Viral , Técnicas In Vitro , Terapia Molecular Dirigida , Primates/virología , Unión Proteica/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
2.
Nature ; 598(7881): 504-509, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616043

RESUMEN

Dengue virus causes approximately 96 million symptomatic infections annually, manifesting as dengue fever or occasionally as severe dengue1,2. There are no antiviral agents available to prevent or treat dengue. Here, we describe a highly potent dengue virus inhibitor (JNJ-A07) that exerts nanomolar to picomolar activity against a panel of 21 clinical isolates that represent the natural genetic diversity of known genotypes and serotypes. The molecule has a high barrier to resistance and prevents the formation of the viral replication complex by blocking the interaction between two viral proteins (NS3 and NS4B), thus revealing a previously undescribed mechanism of antiviral action. JNJ-A07 has a favourable pharmacokinetic profile that results in outstanding efficacy against dengue virus infection in mouse infection models. Delaying start of treatment until peak viraemia results in a rapid and significant reduction in viral load. An analogue is currently in further development.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/clasificación , Virus del Dengue/efectos de los fármacos , Dengue/virología , Proteínas de la Membrana/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Antivirales/farmacocinética , Antivirales/uso terapéutico , Dengue/tratamiento farmacológico , Virus del Dengue/genética , Virus del Dengue/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , Serina Endopeptidasas/metabolismo , Carga Viral/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Viremia/tratamiento farmacológico , Viremia/virología , Replicación Viral/efectos de los fármacos
3.
Cell Mol Life Sci ; 79(6): 293, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35562519

RESUMEN

Atypical chemokine receptor 3 (ACKR3, formerly CXC chemokine receptor 7) is a G protein-coupled receptor that recruits ß-arrestins, but is devoid of functional G protein signaling after receptor stimulation. In preclinical models of liver and lung fibrosis, ACKR3 was previously shown to be upregulated after acute injury in liver sinusoidal and pulmonary capillary endothelial cells, respectively. This upregulation was linked with a pro-regenerative and anti-fibrotic role for ACKR3. A recently described ACKR3-targeting small molecule agonist protected mice from isoproterenol-induced cardiac fibrosis. Here, we aimed to evaluate its protective role in preclinical models of liver and lung fibrosis. After confirming its in vitro pharmacological activity (i.e., ACKR3-mediated ß-arrestin recruitment and receptor binding), in vivo administration of this ACKR3 agonist led to increased mouse CXCL12 plasma levels, indicating in vivo interaction of the agonist with ACKR3. Whereas twice daily in vivo administration of the ACKR3 agonist lacked inhibitory effect on bleomycin-induced lung fibrosis, it had a modest, but significant anti-fibrotic effect in the carbon tetrachloride (CCl4)-induced liver fibrosis model. In the latter model, ACKR3 stimulation affected the expression of several fibrosis-related genes and led to reduced collagen content as determined by picro-sirius red staining and hydroxyproline quantification. These data confirm that ACKR3 agonism, at least to some extent, attenuates fibrosis, although this effect is rather modest and heterogeneous across various tissue types. Stimulating ACKR3 alone without intervening in other signaling pathways involved in the multicellular crosstalk leading to fibrosis will, therefore, most likely not be sufficient to deliver a satisfactory clinical outcome.


Asunto(s)
Fibrosis Pulmonar , Receptores CXCR , Animales , Ratones , beta-Arrestinas/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/farmacología , Células Endoteliales/metabolismo , Hígado/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Receptores CXCR/química , Receptores CXCR/genética , Receptores CXCR/metabolismo
5.
Molecules ; 27(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35164317

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure-activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Compuestos Heterocíclicos/farmacología , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Ensayos Analíticos de Alto Rendimiento , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Células Vero
6.
Biochem Biophys Res Commun ; 555: 134-139, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33813272

RESUMEN

There is an urgent need for antivirals targeting the SARS-CoV-2 virus to fight the current COVID-19 pandemic. The SARS-CoV-2 main protease (3CLpro) represents a promising target for antiviral therapy. The lack of selectivity for some of the reported 3CLpro inhibitors, specifically versus cathepsin L, raises potential safety and efficacy concerns. ALG-097111 potently inhibited SARS-CoV-2 3CLpro (IC50 = 7 nM) without affecting the activity of human cathepsin L (IC50 > 10 µM). When ALG-097111 was dosed in hamsters challenged with SARS-CoV-2, a robust and significant 3.5 log10 (RNA copies/mg) reduction of the viral RNA copies and 3.7 log10 (TCID50/mg) reduction in the infectious virus titers in the lungs was observed. These results provide the first in vivo validation for the SARS-CoV-2 3CLpro as a promising therapeutic target for selective small molecule inhibitors.


Asunto(s)
Amidas/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Modelos Animales de Enfermedad , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Amidas/farmacocinética , Animales , COVID-19/virología , Catepsina L/antagonistas & inhibidores , Línea Celular , Cricetinae , Inhibidores de Cisteína Proteinasa/farmacocinética , Femenino , Humanos , Concentración 50 Inhibidora , Masculino , Mesocricetus/virología , Reproducibilidad de los Resultados , SARS-CoV-2/crecimiento & desarrollo , Serina Endopeptidasas , Especificidad por Sustrato , Replicación Viral/efectos de los fármacos
7.
Artículo en Inglés | MEDLINE | ID: mdl-32340991

RESUMEN

Despite the worldwide reemergence of the chikungunya virus (CHIKV) and the high morbidity associated with CHIKV infections, there is no approved vaccine or antiviral treatment available. Here, we aimed to identify the target of a novel class of CHIKV inhibitors, i.e., the CHVB series. CHVB compounds inhibit the in vitro replication of CHIKV isolates with 50% effective concentrations in the low-micromolar range. A CHVB-resistant variant (CHVBres) was selected that carried two mutations in the gene encoding nsP1 (responsible for viral RNA capping), one mutation in nsP2, and one mutation in nsP3. Reverse genetics studies demonstrated that both nsP1 mutations were necessary and sufficient to achieve ∼18-fold resistance, suggesting that CHVB targets viral mRNA capping. Interestingly, CHVBres was cross-resistant to the previously described CHIKV capping inhibitors from the MADTP series, suggesting they share a similar mechanism of action. In enzymatic assays, CHVB inhibited the methyltransferase and guanylyltransferase activities of alphavirus nsP1 proteins. To conclude, we identified a class of CHIKV inhibitors that targets the viral capping machinery. The potent anti-CHIKV activity makes this chemical scaffold a potential candidate for CHIKV drug development.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Antivirales/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/genética , Chlorocebus aethiops , Células Vero , Proteínas no Estructurales Virales , Replicación Viral
8.
J Biol Chem ; 293(7): 2534-2545, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29237730

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) belong to the family of pentameric ligand-gated ion channels and mediate fast excitatory transmission in the central and peripheral nervous systems. Among the different existing receptor subtypes, the homomeric α7 nAChR has attracted considerable attention because of its possible implication in several neurological and psychiatric disorders, including cognitive decline associated with Alzheimer's disease or schizophrenia. Allosteric modulators of ligand-gated ion channels are of particular interest as therapeutic agents, as they modulate receptor activity without affecting normal fluctuations of synaptic neurotransmitter release. Here, we used X-ray crystallography and surface plasmon resonance spectroscopy of α7-acetylcholine-binding protein (AChBP), a humanized chimera of a snail AChBP, which has 71% sequence similarity with the extracellular ligand-binding domain of the human α7 nAChR, to investigate the structural determinants of allosteric modulation. We extended previous observations that an allosteric site located in the vestibule of the receptor offers an attractive target for receptor modulation. We introduced seven additional humanizing mutations in the vestibule-located binding site of AChBP to improve its suitability as a model for studying allosteric binding. Using a fragment-based screening approach, we uncovered an allosteric binding site located near the ß8-ß9 loop, which critically contributes to coupling ligand binding to channel opening in human α7 nAChR. This work expands our understanding of the topology of allosteric binding sites in AChBP and, by extrapolation, in the human α7 nAChR as determined by electrophysiology measurements. Our insights pave the way for drug design strategies targeting nAChRs involved in ion channel-mediated disorders.


Asunto(s)
Acetilcolina/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolina/química , Regulación Alostérica , Sitio Alostérico , Animales , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Dominios Proteicos , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Caracoles , Receptor Nicotínico de Acetilcolina alfa 7/genética
9.
Retrovirology ; 15(1): 5, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29329553

RESUMEN

BACKGROUND: Combination antiretroviral therapy efficiently suppresses HIV replication in infected patients, transforming HIV/AIDS into a chronic disease. Viral resistance does develop however, especially under suboptimal treatment conditions such as poor adherence. As a consequence, continued exploration of novel targets is paramount to identify novel antivirals that do not suffer from cross-resistance with existing drugs. One new promising class of targets are HIV protein-cofactor interactions. Transportin-SR2 (TRN-SR2) is a ß-karyopherin that was recently identified as an HIV-1 cofactor. It has been implicated in nuclear import of the viral pre-integration complex and was confirmed as a direct binding partner of HIV-1 integrase (IN). Nevertheless, consensus on its mechanism of action is yet to be reached. RESULTS: Here we describe the development and use of an AlphaScreen-based high-throughput screening cascade for small molecule inhibitors of the HIV-1 IN-TRN-SR2 interaction. False positives and nonspecific protein-protein interaction inhibitors were eliminated through different counterscreens. We identified and confirmed 2 active compound series from an initial screen of 25,608 small molecules. These compounds significantly reduced nuclear import of fluorescently labeled HIV particles. CONCLUSIONS: Alphascreen-based high-throughput screening can allow the identification of compounds representing a novel class of HIV inhibitors. These results corroborate the role of the IN-TRN-SR2 interaction in nuclear import. These compounds represent the first in class small molecule inhibitors of HIV-1 nuclear import.


Asunto(s)
Antivirales/farmacología , Núcleo Celular/metabolismo , Integrasa de VIH/metabolismo , VIH-1/efectos de los fármacos , Replicación Viral/efectos de los fármacos , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Antivirales/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Efecto Citopatogénico Viral/efectos de los fármacos , Descubrimiento de Drogas , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas
10.
J Antimicrob Chemother ; 73(7): 1823-1829, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29596680

RESUMEN

Objectives: We report the use of reconstituted 3D human airway epithelium cells (HuAECs) of bronchial origin in an air-liquid interface to study respiratory syncytial virus (RSV) infection and to assess the efficacy of RSV inhibitors in (pre-)clinical development. Methods: HuAECs were infected with RSV-A Long strain (0.01 CCID50/cell, where CCID50 represents 50% cell culture infectious dose in HEp2 cells) on the apical compartment of the culture. At the time of infection or at 1 or 3 days post-infection, selected inhibitors were added and refreshed daily on the basal compartment of the culture. Viral shedding was followed up by apical washes collected daily and quantifying viral RNA by RT-qPCR. Results: RSV-A replicates efficiently in HuAECs and viral RNA is shed for weeks after infection. RSV infection reduces the ciliary beat frequency of the ciliated cells as of 4 days post-infection, with complete ciliary dyskinesia observed by day 10. Treatment with RSV fusion inhibitors resulted in an antiviral effect only when added at the time of infection. In contrast, the use of replication inhibitors (both nucleoside and non-nucleoside) elicited a marked antiviral effect even when the start of treatment was delayed until 1 day or even 3 days after infection. Levels of the inflammation marker RANTES (mRNA) increased ∼200-fold in infected, untreated cultures (at 3 weeks post-infection), but levels were comparable to those of uninfected cultures in the presence of PC786, an RSV replication inhibitor, suggesting that an efficient antiviral treatment might inhibit virus-induced inflammation in this model. Conclusions: Overall, HuAECs offer a robust and physiologically relevant model to study RSV replication and to assess the efficacy of antiviral compounds.


Asunto(s)
Antivirales/farmacología , Mucosa Respiratoria/virología , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Benzamidas , Benzazepinas , Técnicas de Cultivo de Célula , Evaluación Preclínica de Medicamentos , Células Epiteliales/virología , Humanos , Técnicas de Cultivo de Órganos , ARN Viral/genética , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/genética , Compuestos de Espiro/farmacología
11.
Proc Natl Acad Sci U S A ; 112(11): E1363-72, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25733887

RESUMEN

Transient receptor potential (TRP) cation channel subfamily M member 3 (TRPM3), a member of the TRP channel superfamily, was recently identified as a nociceptor channel in the somatosensory system, where it is involved in the detection of noxious heat; however, owing to the lack of potent and selective agonists, little is known about other potential physiological consequences of the opening of TRPM3. Here we identify and characterize a synthetic TRPM3 activator, CIM0216, whose potency and apparent affinity greatly exceeds that of the canonical TRPM3 agonist, pregnenolone sulfate (PS). In particular, a single application of CIM0216 causes opening of both the central calcium-conducting pore and the alternative cation permeation pathway in a membrane-delimited manner. CIM0216 evoked robust calcium influx in TRPM3-expressing somatosensory neurons, and intradermal injection of the compound induced a TRPM3-dependent nocifensive behavior. Moreover, CIM0216 elicited the release of the peptides calcitonin gene-related peptide (CGRP) from sensory nerve terminals and insulin from isolated pancreatic islets in a TRPM3-dependent manner. These experiments identify CIM0216 as a powerful tool for use in investigating the physiological roles of TRPM3, and indicate that TRPM3 activation in sensory nerve endings can contribute to neurogenic inflammation.


Asunto(s)
Neuropéptidos/metabolismo , Quinolinas/farmacología , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células HEK293 , Calor , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Ligandos , Ratones Endogámicos C57BL , Terminaciones Nerviosas/efectos de los fármacos , Terminaciones Nerviosas/metabolismo , Nocicepción/efectos de los fármacos , Dolor/patología , Dolor/fisiopatología , Pregnenolona/farmacología , Quinolinas/química , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPM/agonistas , Transfección
12.
Artículo en Inglés | MEDLINE | ID: mdl-28630188

RESUMEN

Antibiotics typically fail to completely eradicate a bacterial population, leaving a small fraction of transiently antibiotic-tolerant persister cells intact. Persisters are therefore seen to be a major cause of treatment failure and greatly contribute to the recalcitrant nature of chronic infections. The current study focused on Pseudomonas aeruginosa, a Gram-negative pathogen belonging to the notorious ESKAPE group of pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) and, due to increasing resistance against most conventional antibiotics, posing a serious threat to human health. Greatly contributing to the difficult treatment of P. aeruginosa infections is the presence of persister cells, and elimination of these cells would therefore significantly improve patient outcomes. In this study, a small-molecule library was screened for compounds that, in combination with the fluoroquinolone antibiotic ofloxacin, reduced the number of P. aeruginosa persisters compared to the number achieved with treatment with the antibiotic alone. Based on the early structure-activity relationship, 1-((2,4-dichlorophenethyl)amino)-3-phenoxypropan-2-ol (SPI009) was selected for further characterization. Combination of SPI009 with mechanistically distinct classes of antibiotics reduced the number of persisters up to 106-fold in both lab strains and clinical isolates of P. aeruginosa Further characterization of the compound revealed a direct and efficient killing of persister cells. SPI009 caused no erythrocyte damage and demonstrated minor cytotoxicity. In conclusion, we identified a novel antipersister compound active against P. aeruginosa with promising applications for the design of novel, case-specific combination therapies in the fight against chronic infections.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Biopelículas/efectos de los fármacos , Línea Celular , Bacterias Gramnegativas/efectos de los fármacos , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Relación Estructura-Actividad
13.
J Antimicrob Chemother ; 69(4): 1035-44, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24284780

RESUMEN

OBJECTIVES: Biofilms of Candida species, often formed on medical devices, are generally resistant to currently available antifungal drugs. The aim of this study was to identify compounds that increase the activity of amphotericin B and caspofungin, commonly used antifungal agents, against Candida biofilms. METHODS: A library containing off-patent drugs was screened for compounds, termed enhancers, that increase the in vitro activity of amphotericin B against Candida albicans biofilms. Biofilms were grown in 96-well plates and growth was determined by the cell titre blue assay. Synergy between identified enhancers and antifungal agents was further characterized in vitro using fractional inhibitory concentration index (FICI) values and in vivo using a worm biofilm infection model. In light of the application of these enhancers onto implants, their possible effect on the growth potential of MG63 osteoblast-like cells was assessed. RESULTS: Pre-incubation of C. albicans biofilms with subinhibitory concentrations of the enhancers drospirenone, perhexiline maleate or toremifene citrate significantly increased the activity of amphotericin B or caspofungin (FICI  < 0.5) against C. albicans and Candida glabrata biofilms. Moreover, these enhancers did not affect the growth potential of osteoblasts. Interestingly, toremifene citrate also enhanced the in vitro activity of caspofungin in a mixed biofilm consisting of C. albicans and Staphylococcus epidermidis. Furthermore, we demonstrate synergy between toremifene citrate and caspofungin in an in vivo worm C. albicans biofilm infection model. CONCLUSIONS: Our data demonstrate an in vitro and in vivo enhancement of the antibiofilm activity of caspofungin by toremifene citrate. Furthermore, our results pave the way for implant-related applications of the identified enhancers.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Reposicionamiento de Medicamentos , Sinergismo Farmacológico , Equinocandinas/farmacología , Androstenos/farmacología , Animales , Caenorhabditis elegans/microbiología , Candida albicans/fisiología , Caspofungina , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Perhexilina/análogos & derivados , Perhexilina/farmacología , Toremifeno/farmacología
14.
Bioorg Med Chem Lett ; 24(23): 5404-8, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25453797

RESUMEN

Pseudomonas aeruginosa strains resistant towards all currently available antibiotics are increasingly encountered, raising the need for new anti-pseudomonal drugs. We therefore conducted a medium-throughput screen of a small-molecule collection resulting in the identification of the N-alkylated 3,6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol (MIC = 18.5 µg mL⁻¹). This compound, compound 1, is bacteriostatic towards a broad spectrum of Gram-positive and Gram-negative pathogens, including P. aeruginosa. Importantly, 1 also eradicates mature biofilms of P. aeruginosa. 1 displays no cytotoxicity against various human cell types, pointing to its potential for further development as a novel antibacterial drug.


Asunto(s)
Antibacterianos/uso terapéutico , Carbazoles/química , Pseudomonas aeruginosa/aislamiento & purificación , Biopelículas , Carbazoles/análisis , Humanos , Pruebas de Sensibilidad Microbiana
15.
J Med Chem ; 67(5): 4063-4082, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38482827

RESUMEN

Dengue is a global public health threat, with about half of the world's population at risk of contracting this mosquito-borne viral disease. Climate change, urbanization, and global travel accelerate the spread of dengue virus (DENV) to new areas, including southern parts of Europe and the US. Currently, no dengue-specific small-molecule antiviral for prophylaxis or treatment is available. Here, we report the discovery of JNJ-1802 as a potent, pan-serotype DENV inhibitor (EC50's ranging from 0.057 to 11 nM against the four DENV serotypes). The observed oral bioavailability of JNJ-1802 across preclinical species, its low clearance in human hepatocytes, the absence of major in vitro pharmacology safety alerts, and a dose-proportional increase in efficacy against DENV-2 infection in mice were all supportive of its selection as a development candidate against dengue. JNJ-1802 is being progressed in clinical studies for the prevention or treatment of dengue.


Asunto(s)
Virus del Dengue , Dengue , Hidrocarburos Halogenados , Indoles , Ratones , Humanos , Animales , Serogrupo , Dengue/tratamiento farmacológico
16.
Antiviral Res ; 224: 105838, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373533

RESUMEN

Rabies, a viral zoonosis, is responsible for almost 59,000 deaths each year, despite the existence of an effective post-exposure prophylaxis. Indeed, rabies causes acute encephalomyelitis, with a case-fatality rate of 100 % after the onset of neurological clinical signs. Therefore, the development of therapies to inhibit the rabies virus (RABV) is crucial. Here, we identified, from a 30,000 compound library screening, phthalazinone derivative compounds as potent inhibitors of RABV infection and more broadly of Lyssavirus and even Mononegavirales infections. Combining in vitro experiments, structural modelling, in silico docking and in vivo assays, we demonstrated that phthalazinone derivatives display a strong inhibition of lyssaviruses infection by acting directly on the replication complex of the virus, and with noticeable effects in delaying the onset of the clinical signs in our mouse model.


Asunto(s)
Lyssavirus , Virus de la Rabia , Rabia , Animales , Ratones , Rabia/prevención & control , Biblioteca de Genes , Modelos Animales de Enfermedad
17.
Mol Cancer Ther ; 23(1): 3-13, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37748190

RESUMEN

The Hippo pathway and its downstream effectors, the YAP and TAZ transcriptional coactivators, are deregulated in multiple different types of human cancer and are required for cancer cell phenotypes in vitro and in vivo, while largely dispensable for tissue homeostasis in adult mice. YAP/TAZ and their main partner transcription factors, the TEAD1-4 factors, are therefore promising anticancer targets. Because of frequent YAP/TAZ hyperactivation caused by mutations in the Hippo pathway components NF2 and LATS2, mesothelioma is one of the prime cancer types predicted to be responsive to YAP/TAZ-TEAD inhibitor treatment. Mesothelioma is a devastating disease for which currently no effective treatment options exist. Here, we describe a novel covalent YAP/TAZ-TEAD inhibitor, SWTX-143, that binds to the palmitoylation pocket of all four TEAD isoforms. SWTX-143 caused irreversible and specific inhibition of the transcriptional activity of YAP/TAZ-TEAD in Hippo-mutant tumor cell lines. More importantly, YAP/TAZ-TEAD inhibitor treatment caused strong mesothelioma regression in subcutaneous xenograft models with human cells and in an orthotopic mesothelioma mouse model. Finally, SWTX-143 also selectively impaired the growth of NF2-mutant kidney cancer cell lines, suggesting that the sensitivity of mesothelioma models to these YAP/TAZ-TEAD inhibitors can be extended to other tumor types with aberrations in Hippo signaling. In brief, we describe a novel and specific YAP/TAZ-TEAD inhibitor that has potential to treat multiple Hippo-mutant solid tumor types.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Adulto , Humanos , Animales , Ratones , Vía de Señalización Hippo , Proteínas Señalizadoras YAP , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Mesotelioma/tratamiento farmacológico , Mesotelioma/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Supresoras de Tumor/metabolismo
18.
Bioorg Med Chem ; 21(22): 7107-17, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24095010

RESUMEN

Under hypoxia, cancer cells consume glucose and release lactate at a high rate. Lactate was recently documented to be recaptured by oxygenated cancer cells to fuel the TCA cycle and thereby to support tumor growth. Monocarboxylate transporters (MCT) are the main lactate carriers and therefore represent potential therapeutic targets to limit cancer progression. In this study, we have developed and implemented a stepwise in vitro screening procedure on human cancer cells to identify new potent MCT inhibitors. Various 7-substituted carboxycoumarins and quinolinone derivatives were synthesized and pharmacologically evaluated. Most active compounds were obtained using a palladium-catalyzed Buchwald-Hartwig type coupling reaction, which proved to be a quick and efficient method to obtain aminocarboxycoumarin derivatives. Inhibition of lactate flux revealed that the most active compound 19 (IC50 11 nM) was three log orders more active than the CHC reference compound. Comparison with warfarin, a conventional anticoagulant coumarin, further showed that compound 19 did not influence the prothrombin time which, together with a good in vitro ADME profile, supports the potential of this new family of compounds to act as anticancer drugs through inhibition of lactate flux.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Cumarinas/síntesis química , Cumarinas/farmacología , Lactatos/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Semivida , Humanos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Quinolonas/química
19.
Viruses ; 15(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140533

RESUMEN

Rabies virus (RABV) causes severe neurological symptoms in mammals. The disease is almost inevitably lethal as soon as clinical symptoms appear. The use of rabies immunoglobulins (RIG) and vaccination in post-exposure prophylaxis (PEP) can provide efficient protection, but many people do not receive this treatment due to its high cost and/or limited availability. Highly potent small molecule antivirals are urgently needed to treat patients once symptoms develop. In this paper, we report on the development of a high-throughput phenotypic antiviral screening assay based on the infection of BHK-21 cells with a fluorescent reporter virus and high content imaging readout. The assay was used to screen a repurposing library of 3681 drugs (all had been studied in phase 1 clinical trials). From this series, salinomycin was found to selectively inhibit viral replication by blocking infection at the entry stage. This shows that a high-throughput assay enables the screening of large compound libraries for the purposes of identifying inhibitors of RABV replication. These can then be optimized through medicinal chemistry efforts and further developed into urgently needed drugs for the treatment of symptomatic rabies.


Asunto(s)
Virus de la Rabia , Rabia , Animales , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Replicación Viral , Mamíferos
20.
Antiviral Res ; 210: 105495, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36567021

RESUMEN

While progress has been made in fighting diseases disproportionally affecting underserved populations, unmet medical needs persist for many neglected tropical diseases. The World Health Organization has encouraged strong public-private partnerships to address this issue and several public and private organizations have set an example in the past showing a strong commitment to combat these diseases. Pharmaceutical companies are contributing in different ways to address the imbalance in research efforts. With this review, we exemplify the role of a public-private partnership in research and development by the journey of our dengue antiviral molecule that is now in early clinical development. We detail the different steps of drug development and outline the contribution of each partner to this process. Years of intensive collaboration resulted in the identification of two antiviral compounds, JNJ-A07 and JNJ-1802, the latter of which has advanced to clinical development.


Asunto(s)
Dengue , Asociación entre el Sector Público-Privado , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Serogrupo , Industria Farmacéutica , Enfermedades Desatendidas/tratamiento farmacológico , Enfermedades Desatendidas/prevención & control , Dengue/tratamiento farmacológico , Dengue/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA