RESUMEN
2-(ω-Carboxyethyl)pyrrole (CEP) derivatives of proteins were previously shown to have significant pathological and physiological relevance to age-related macular degeneration, cancer and wound healing. Previously, we showed that CEPs are generated in the reaction of ε-amino groups of protein lysyl residues with 1-palmityl-2-(4-hydroxy-7-oxo-5-heptenoyl)-sn-glycero-3-phosphatidylcholine (HOHA-PC), a lipid oxidation product uniquely generated by oxidative truncation of docosahexanenate-containing phosphatidylcholine. More recently, we found that HOHA-PC rapidly releases HOHA-lactone and 2-lyso-PC (t1/2 = 30 min at 37 °C) by nonenzymatic transesterification/deacylation. Now we report that HOHA-lactone reacts with Ac-Gly-Lys-OMe or human serum albumin to form CEP derivatives in vitro. Incubation of human red blood cell ghosts with HOHA-lactone generates CEP derivatives of membrane proteins and ethanolamine phospholipids. Quantitative analysis of the products generated in the reaction HOHA-PC with Ac-Gly-Lys-OMe showed that HOHA-PC mainly forms CEP-dipeptide that is not esterified to 2-lysophosphatidycholine. Thus, the HOHA-lactone pathway predominates over the direct reaction of HOHA-PC to produce the CEP-PC-dipeptide derivative. Myleoperoxidase/H2O2/NO2(-) promoted in vitro oxidation of either 1-palmityl-2-docosahexaneoyl-sn-glycero-3-phosphatidylcholine (DHA-PC) or docosahexaenoic acid (DHA) generates HOHA-lactone in yields of 0.45% and 0.78%, respectively. Lipid oxidation in human red blood cell ghosts also releases HOHA-lactone. Oxidative injury of ARPE-19 human retinal pigmented epithelial cells by exposure to H2O2 generated CEP derivatives. Treatment of ARPE-19 cells with HOHA-lactone generated CEP-modified proteins. Low (submicromolar), but not high, concentrations of HOHA-lactone promote increased vascular endothelial growth factor (VEGF) secretion by ARPE-19 cells. Therefore, HOHA-lactone not only serves as an intermediate for the generation of CEPs but also is a biologically active oxidative truncation product from docosahexaenoate lipids.
Asunto(s)
Eritrocitos/metabolismo , Lactonas/metabolismo , Fosfatidiletanolaminas/metabolismo , Pirroles/metabolismo , Epitelio Pigmentado de la Retina/citología , Albúmina Sérica/metabolismo , Línea Celular , Proliferación Celular , Ácidos Docosahexaenoicos/química , Ácidos Docosahexaenoicos/metabolismo , Eritrocitos/química , Eritrocitos/citología , Humanos , Lactonas/química , Oxidación-Reducción , Fosfatidiletanolaminas/química , Pirroles/química , Epitelio Pigmentado de la Retina/química , Epitelio Pigmentado de la Retina/metabolismo , Albúmina Sérica/química , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Retinal pigment epithelial (RPE) cell dysfunction and death play vital roles in age-related macular degeneration (AMD) pathogenesis. Previously we showed that oxidative cleavage of docosahexenoate (DHA) phospholipids generates an α,ß-unsaturated aldehyde, 4-hydroxy-7-oxohept-4-enoic acid (HOHA) lactone, that forms ω-carboxyethylpyrrole (CEP) derivatives through adduction to proteins and ethanolamine phospholipids. CEP derivatives and autoantibodies accumulate in the retinas and blood plasma of individuals with AMD and are a biomarker of AMD. They promote the choroidal neovascularization of "wet AMD". Immunization of mice with CEP-modified mouse serum albumin induces "dry AMD"-like lesions in their retinas as well as interferon-gamma and interleukin-17 production by CEP-specific T cells that promote inflammatory M1 polarization of macrophages. The present study confirms that oxidative stress or inflammatory stimulus produces CEP in both the primary human ARPE-19 cell line and hRPE cells. Exposure of these cells to HOHA lactone fosters production of reactive oxygen species. Thus, HOHA lactone participates in a vicious cycle, promoting intracellular oxidative stress leading to oxidative cleavage of DHA to produce more HOHA lactone. We now show that HOHA lactone is cytotoxic, inducing apoptotic cell death through activation of the intrinsic pathway. This suggests that therapeutic interventions targeting HOHA lactone-induced apoptosis may prevent the loss of RPE cells during the early phase of AMD. We also discovered that ARPE-19 cells are more susceptible than hRPE cells to HOHA lactone cytotoxicity. This is consistent with the view that, compared to normal RPE cells, ARPE-19 cells exhibit a diseased RPE phenotype that also includes elevated expression of the mesenchymal indicator vimentin, elevated integrin a5 promotor strength and deficient secretion of the anti-VEGF molecule pigment-epithelium-derived factor fostering weaker tight junctions.