Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Syst Biol ; 72(4): 964-971, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37161751

RESUMEN

Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this "splitting" scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.].


Asunto(s)
Evolución Biológica , Arañas , Animales , Filogenia , Arañas/genética
2.
Sci Rep ; 12(1): 17769, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273015

RESUMEN

Net-casting spiders (Deinopidae) comprise a charismatic family with an enigmatic evolutionary history. There are 67 described species of deinopids, placed among three genera, Deinopis, Menneus, and Asianopis, that are distributed globally throughout the tropics and subtropics. Deinopis and Asianopis, the ogre-faced spiders, are best known for their giant light-capturing posterior median eyes (PME), whereas Menneus does not have enlarged PMEs. Molecular phylogenetic studies have revealed discordance between morphology and molecular data. We employed a character-rich ultra-conserved element (UCE) dataset and a taxon-rich cytochrome-oxidase I (COI) dataset to reconstruct a genus-level phylogeny of Deinopidae, aiming to investigate the group's historical biogeography, and examine PME size evolution. Although the phylogenetic results support the monophyly of Menneus and the single reduction of PME size in deinopids, these data also show that Deinopis is not monophyletic. Consequently, we formally transfer 24 Deinopis species to Asianopis; the transfers comprise all of the African, Australian, South Pacific, and a subset of Central American and Mexican species. Following the divergence of Eastern and Western deinopids in the Cretaceous, Deinopis/Asianopis dispersed from Africa, through Asia and into Australia with its biogeographic history reflecting separation of Western Gondwana as well as long-distance dispersal events.


Asunto(s)
Arañas , Animales , Filogenia , Australia , Citocromos , Oxidorreductasas , Evolución Molecular , Teorema de Bayes
3.
PeerJ ; 8: e8976, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32391201

RESUMEN

BACKGROUND: Modern molecular analyses are often inconsistent with pre-cladistic taxonomic hypotheses, frequently indicating higher richness than morphological taxonomy estimates. Among Caribbean spiders, widespread species are relatively few compared to the prevalence of single island endemics. The taxonomic hypothesis Gasteracantha cancriformis circumscribes a species with profuse variation in size, color and body form. Distributed throughout the Neotropics, G. cancriformis is the only morphological species of Gasteracantha in the New World in this globally distributed genus. METHODS: We inferred phylogenetic relationships across Neotropical populations of Gasteracantha using three target genes. Within the Caribbean, we estimated genetic diversity, population structure, and gene flow among island populations. RESULTS: Our findings revealed a single widespread species of Gasteracantha throughout the Caribbean, G. cancriformis, while suggesting two recently divergent mainland populations that may represent separate species, diverging linages, or geographically isolated demes. The concatenated and COI (Cytochrome c oxidase subunit 1) phylogeny supported a Caribbean clade nested within the New World. Genetic variability was high between island populations for our COI dataset; however, gene flow was also high, especially between large, adjacent islands. We found structured genetic and morphological variation within G. cancriformis island populations; however, this variation does not reflect genealogical relationships. Rather, isolation by distance and local morphological adaptation may explain the observed variation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA