RESUMEN
Excitatory amino acid transporters (EAATs) maintain glutamate gradients in the brain essential for neurotransmission and to prevent neuronal death. They use ionic gradients as energy source and co-transport transmitter into the cytoplasm with Na+ and H+ , while counter-transporting K+ to re-initiate the transport cycle. However, the molecular mechanisms underlying ion-coupled transport remain incompletely understood. Here, we present 3D X-ray crystallographic and cryo-EM structures, as well as thermodynamic analysis of human EAAT1 in different ion bound conformations, including elusive counter-transport ion bound states. Binding energies of Na+ and H+ , and unexpectedly Ca2+ , are coupled to neurotransmitter binding. Ca2+ competes for a conserved Na+ site, suggesting a regulatory role for Ca2+ in glutamate transport at the synapse, while H+ binds to a conserved glutamate residue stabilizing substrate occlusion. The counter-transported ion binding site overlaps with that of glutamate, revealing the K+ -based mechanism to exclude the transmitter during the transport cycle and to prevent its neurotoxic release on the extracellular side.
Asunto(s)
Transportador 1 de Aminoácidos Excitadores/metabolismo , Sitios de Unión , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Microscopía por Crioelectrón , Transportador 1 de Aminoácidos Excitadores/química , Transportador 1 de Aminoácidos Excitadores/ultraestructura , Humanos , Transporte Iónico , Modelos Moleculares , Conformación Proteica , Protones , Sodio/metabolismoRESUMEN
Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. Once the developability of a mAb drug candidate has been assessed, an important step is to check its in vivo stability through pharmacokinetics (PK) studies. The gold standard is ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) performed at the peptide level (bottom-up approach). However, these analytical techniques do not allow to address the different mAb proteoforms that can arise from biotransformation. In recent years, top-down and middle-down mass spectrometry approaches have gained popularity to characterize proteins at the proteoform level but are not yet widely used for PK studies. We propose here a workflow based on an automated immunocapture followed by top-down and middle-down liquid chromatography-tandem mass spectrometry (LC-MS/MS) approaches to characterize mAb proteoforms spiked in mouse plasma. We demonstrate the applicability of our workflow on a large concentration range using pembrolizumab as a model. We also compare the performance of two state-of-the-art Orbitrap platforms (Tribrid Eclipse and Exploris 480) for these studies. The added value of our workflow for an accurate and sensitive characterization of mAb proteoforms in mouse plasma is highlighted.
Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Animales , Ratones , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Plasma , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/farmacocinéticaRESUMEN
The bacterial type VI secretion system (T6SS) is a macromolecular machine that injects effectors into prokaryotic and eukaryotic cells. The mode of action of the T6SS is similar to contractile phages: the contraction of a sheath structure pushes a tube topped by a spike into target cells. Effectors are loaded onto the spike or confined into the tube. In enteroaggregative Escherichia coli, the Tle1 phospholipase binds the C-terminal extension of the VgrG trimeric spike. Here, we purify the VgrG-Tle1 complex and show that a VgrG trimer binds three Tle1 monomers and inhibits their activity. Using covalent cross-linking coupled to high-resolution mass spectrometry, we provide information on the sites of contact and further identify the requirement for a Tle1 N-terminal secretion sequence in complex formation. Finally, we report the 2.6-Å-resolution cryo-electron microscopy tri-dimensional structure of the (VgrG)3 -(Tle1)3 complex revealing how the effector binds its cargo, and how VgrG inhibits Tle1 phospholipase activity. The inhibition of Tle1 phospholipase activity once bound to VgrG suggests that Tle1 dissociation from VgrG is required upon delivery.
Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fosfolipasas/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Fosfolipasas/genética , Sistemas de Secreción Tipo VI/genéticaRESUMEN
Cross-linking mass spectrometry (XL-MS) has become a very useful tool for studying protein complexes and interactions in living systems. It enables the investigation of many large and dynamic assemblies in their native state, providing an unbiased view of their protein interactions and restraints for integrative modeling. More researchers are turning toward trying XL-MS to probe their complexes of interest, especially in their native environments. However, due to the presence of other potentially higher abundant proteins, sufficient cross-links on a system of interest may not be reached to achieve satisfactory structural and interaction information. There are currently no rules for predicting whether XL-MS experiments are likely to work or not; in other words, if a protein complex of interest will lead to useful XL-MS data. Here, we show that a simple iBAQ (intensity-based absolute quantification) analysis performed from trypsin digest data can provide a good understanding of whether proteins of interest are abundant enough to achieve successful cross-linking data. Comparing our findings to large-scale data on diverse systems from several other groups, we show that proteins of interest should be at least in the top 20% abundance range to expect more than one cross-link found per protein. We foresee that this guideline is a good starting point for researchers who would like to use XL-MS to study their protein of interest and help ensure a successful cross-linking experiment from the beginning. Data are available via ProteomeXchange with identifier PXD045792.
Asunto(s)
Proteínas , Proteínas/análisis , Espectrometría de Masas/métodos , Reactivos de Enlaces Cruzados/químicaRESUMEN
Rearrangement hot spot (Rhs) proteins are members of the broad family of polymorphic toxins. Polymorphic toxins are modular proteins composed of an N-terminal region that specifies their mode of secretion into the medium or into the target cell, a central delivery module, and a C-terminal domain that has toxic activity. Here, we structurally and functionally characterize the C-terminal toxic domain of the antibacterial Rhsmain protein, TreTu, which is delivered by the type VI secretion system of Salmonella enterica Typhimurium. We show that this domain adopts an ADP-ribosyltransferase fold and inhibits protein synthesis by transferring an ADP-ribose group from NAD+ to the elongation factor Tu (EF-Tu). This modification is specifically placed on the side chain of the conserved D21 residue located on the P-loop of the EF-Tu G-domain. Finally, we demonstrate that the TriTu immunity protein neutralizes TreTu activity by acting like a lid that closes the catalytic site and traps the NAD+.
Asunto(s)
Dominio AAA , Factor Tu de Elongación Peptídica , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , ADP-Ribosilación , NAD/metabolismo , Factor Tu de Elongación Peptídica/química , Factor Tu de Elongación Peptídica/metabolismo , Salmonella , Pliegue de ProteínaRESUMEN
BACKGROUND: In a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity. RESULTS: We introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins. CONCLUSIONS: We show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients.
Asunto(s)
Cadenas Ligeras de Inmunoglobulina , Mieloma Múltiple , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Cadenas Ligeras de Inmunoglobulina/metabolismo , Amiloide/metabolismo , Secuencia de Aminoácidos , ProteolisisRESUMEN
Generating top-down tandem mass spectra (MS/MS) from complex mixtures of proteoforms benefits from improvements in fractionation, separation, fragmentation, and mass analysis. The algorithms to match MS/MS to sequences have undergone a parallel evolution, with both spectral alignment and match-counting approaches producing high-quality proteoform-spectrum matches (PrSMs). This study assesses state-of-the-art algorithms for top-down identification (ProSight PD, TopPIC, MSPathFinderT, and pTop) in their yield of PrSMs while controlling false discovery rate. We evaluated deconvolution engines (ThermoFisher Xtract, Bruker AutoMSn, Matrix Science Mascot Distiller, TopFD, and FLASHDeconv) in both ThermoFisher Orbitrap-class and Bruker maXis Q-TOF data (PXD033208) to produce consistent precursor charges and mass determinations. Finally, we sought post-translational modifications (PTMs) in proteoforms from bovine milk (PXD031744) and human ovarian tissue. Contemporary identification workflows produce excellent PrSM yields, although approximately half of all identified proteoforms from these four pipelines were specific to only one workflow. Deconvolution algorithms disagree on precursor masses and charges, contributing to identification variability. Detection of PTMs is inconsistent among algorithms. In bovine milk, 18% of PrSMs produced by pTop and TopMG were singly phosphorylated, but this percentage fell to 1% for one algorithm. Applying multiple search engines produces more comprehensive assessments of experiments. Top-down algorithms would benefit from greater interoperability.
Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Humanos , Proteoma/genética , Proteómica , Programas Informáticos , Procesamiento Proteico-PostraduccionalRESUMEN
Type IV pili (TFP) are multifunctional micrometer-long filaments expressed at the surface of many prokaryotes. In Neisseria meningitidis, TFP are crucial for virulence. Indeed, these homopolymers of the major pilin PilE mediate interbacterial aggregation and adhesion to host cells. However, the mechanisms behind these functions remain unclear. Here, we simultaneously determined regions of PilE involved in pilus display, auto-aggregation, and adhesion by using deep mutational scanning and started mining this extensive functional map. For auto-aggregation, pili must reach a minimum length to allow pilus-pilus interactions through an electropositive cluster of residues centered around Lys140. For adhesion, results point to a key role for the tip of the pilus. Accordingly, purified pili interacting with host cells initially bind via their tip-located major pilin and then along their length. Overall, these results identify functional domains of PilE and support a direct role of the major pilin in TFP-dependent aggregation and adhesion.
Asunto(s)
Adhesión Bacteriana , Agregación Celular , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/fisiología , Mutación , Neisseria meningitidis/fisiología , Proteínas Fimbrias/química , Regulación Bacteriana de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mutagénesis Sitio-DirigidaRESUMEN
MOTIVATION: We present a new software-tool allowing an easy visualization of fragment ions and thus a rapid evaluation of key experimental parameters on the sequence coverage obtained for the MS/MS (tandem mass spectrometry) analysis of intact proteins. Our tool can process data obtained from various deconvolution and fragment assignment software. RESULTS: We demonstrate that TDFragMapper can rapidly highlight the experimental fragmentation parameters that are critical to the characterization of intact proteins of various size using top-down proteomics. AVAILABILITY AND IMPLEMENTATION: TDFragMapper, a demonstration video and user tutorial are freely available for academic use at https://msbio.pasteur.fr/tdfragmapper; all data are thus available from the ProteomeXchange consortium (identifier PXD024643). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Proteínas/química , Programas InformáticosRESUMEN
Human members of the solute carrier 1 (SLC1) family of transporters take up excitatory neurotransmitters in the brain and amino acids in peripheral organs. Dysregulation of the function of SLC1 transporters is associated with neurodegenerative disorders and cancer. Here we present crystal structures of a thermostabilized human SLC1 transporter, the excitatory amino acid transporter 1 (EAAT1), with and without allosteric and competitive inhibitors bound. The structures reveal architectural features of the human transporters, such as intra- and extracellular domains that have potential roles in transport function, regulation by lipids and post-translational modifications. The coordination of the allosteric inhibitor in the structures and the change in the transporter dynamics measured by hydrogen-deuterium exchange mass spectrometry reveal a mechanism of inhibition, in which the transporter is locked in the outward-facing states of the transport cycle. Our results provide insights into the molecular mechanisms underlying the function and pharmacology of human SLC1 transporters.
Asunto(s)
Regulación Alostérica/efectos de los fármacos , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 1 de Aminoácidos Excitadores/química , Sitio Alostérico/efectos de los fármacos , Cristalización , Cristalografía por Rayos X , Medición de Intercambio de Deuterio , Transportador 1 de Aminoácidos Excitadores/metabolismo , Humanos , Espectrometría de Masas , Modelos Moleculares , Dominios Proteicos/efectos de los fármacosRESUMEN
Newcastle disease virus (NDV) is one of the most serious contagions affecting domestic poultry and other avian species. It causes high morbidity and mortality, resulting in huge economic losses to the poultry industry worldwide. Despite vaccination, NDV outbreaks increase the need for alternative prevention and control means. In this study, we have screened fractions of Buthus occitanus tunetanus (Bot) scorpion venom and isolated the first scorpion peptide inhibiting the NDV multiplication. It showed a dose dependent effect on NDV growth in vitro, with an IC50 of 0.69 µM, and a low cytotoxicity on cultured Vero cells (CC50 > 55 µM). Furthermore, tests carried out in specific pathogen-free embryonated chicken eggs demonstrated that the isolated peptide has a protective effect on chicken embryos against NDV, and reduced by 73% the virus titer in allantoic fluid. The N-terminal sequence, as well as the number of cysteine residues of the isolated peptide, showed that it belongs to the scorpion venom Chlorotoxin-like peptides family, which led us to designate it "BotCl". Interestingly, at 10 µg/mL, BotCl showed an inhibiting effect three times higher than its analogue AaCtx, from Androctonus australis (Aa) scorpion venom, on NDV development. Altogether, our results highlight the chlorotoxin-like peptides as a new scorpion venom AMPs family.
Asunto(s)
Virus de la Enfermedad de Newcastle , Venenos de Escorpión , Animales , Chlorocebus aethiops , Embrión de Pollo , Células Vero , Péptidos/química , Venenos de Escorpión/farmacología , Venenos de Escorpión/química , Pollos , EscorpionesRESUMEN
One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.
Asunto(s)
Benchmarking , Espectrometría de Masas/métodos , Proteínas/química , Desnaturalización Proteica , Procesamiento Proteico-Postraduccional , ProteómicaRESUMEN
MOTIVATION: We present a high-performance software integrating shotgun with top-down proteomic data. The tool can deal with multiple experiments and search engines. Enable rapid and easy visualization, manual validation and comparison of the identified proteoform sequences including the post-translational modification characterization. RESULTS: We demonstrate the effectiveness of our approach on a large-scale Escherichia coli dataset; ProteoCombiner unambiguously shortlisted proteoforms among those identified by the multiple search engines. AVAILABILITY AND IMPLEMENTATION: ProteoCombiner, a demonstration video and user tutorial are freely available at https://proteocombiner.pasteur.fr, for academic use; all data are thus available from the ProteomeXchange consortium (identifier PXD017618). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Proteoma , Proteómica , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Programas Informáticos , Espectrometría de Masas en TándemRESUMEN
Flaviviruses enter cells by fusion with endosomal membranes through a rearrangement of the envelope protein E, a class II membrane fusion protein, into fusogenic trimers. The rod-like E subunits bend into "hairpins" to bring the fusion loops next to the C-terminal transmembrane (TM) anchors, with the TM-proximal "stem" element zippering the E trimer to force apposition of the membranes. The structure of the complete class II trimeric hairpin is known for phleboviruses but not for flaviviruses, for which the stem is only partially resolved. Here, we performed comparative analyses of E-protein trimers from the tick-borne encephalitis flavivirus with sequential stem truncations. Our thermostability and antibody-binding data suggest that the stem "zipper" ends at a characteristic flavivirus conserved sequence (CS) that cloaks the fusion loops, with the downstream segment not contributing to trimer stability. We further identified a highly dynamic behavior of E trimers C-terminally truncated upstream the CS, which, unlike fully stem-zippered trimers, undergo rapid deuterium exchange at the trimer interface. These results thus identify important "breathing" intermediates in the E-protein-driven membrane fusion process.
Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Fusión de MembranaRESUMEN
The current technique used for microbial identification in hospitals is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). However, it suffers from important limitations, in particular, for closely related species or when the database used for the identification lacks the appropriate reference. In this work, we set up a liquid chromatography (LC)-MS/MS top-down proteomics platform, which aims at discriminating closely related pathogenic bacteria through the identification of specific proteoforms. Using Escherichia coli as a model, all steps of the workflow were optimized: protein extraction, on-line LC separation, MS method, and data analysis. Using optimized parameters, about 220 proteins, corresponding to more than 500 proteoforms, could be identified in a single run. We then used this platform for the discrimination of enterobacterial pathogens undistinguishable by MALDI-TOF, although leading to very different clinical outcomes. For each pathogen, we identified specific proteoforms that could potentially be used as biomarkers. We also improved the characterization of poorly described bacterial strains. Our results highlight the advantage of addressing proteoforms rather than peptides for accurate bacterial characterization and qualify top-down proteomics as a promising tool in clinical microbiology. Data are available via ProteomeXchange with the identifier PXD019247.
Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Bacterias , Cromatografía Liquida , Espectrometría de Masa por Láser de Matriz Asistida de Ionización DesorciónRESUMEN
In multiple myeloma diseases, monoclonal immunoglobulin light chains (LCs) are abundantly produced, with, as a consequence in some cases, the formation of deposits affecting various organs, such as the kidney, while in other cases remaining soluble up to concentrations of several g·L-1 in plasma. The exact factors crucial for the solubility of LCs are poorly understood, but it can be hypothesized that their amino acid sequence plays an important role. Determining the precise sequences of patient-derived LCs is therefore highly desirable. We establish here a novel de novo sequencing workflow for patient-derived LCs, based on the combination of bottom-up and top-down proteomics without database search. PEAKS is used for the de novo sequencing of peptides that are further assembled into full length LC sequences using ALPS. Top-down proteomics provides the molecular masses of proteoforms and allows the exact determination of the amino acid sequence including all posttranslational modifications. This pipeline is then used for the complete de novo sequencing of LCs extracted from the urine of 10 patients with multiple myeloma. We show that for the bottom-up part, digestions with trypsin and Nepenthes digestive fluid are sufficient to produce overlapping peptides able to generate the best sequence candidates. Top-down proteomics is absolutely required to achieve 100% final sequence coverage and characterize clinical samples containing several LCs. Our work highlights an unexpected range of modifications.
Asunto(s)
Mieloma Múltiple , Secuencia de Aminoácidos , Humanos , Cadenas Ligeras de Inmunoglobulina/genética , Péptidos/genética , Proteómica , Análisis de Secuencia de ProteínaRESUMEN
Chemical cross-linking (XL) coupled to mass spectrometry (MS) has become a powerful approach to probe the structure of protein assemblies. Although most of the applications concerned purified complexes, latest developments focus on large-scale in vivo studies. Pushing in this direction, we developed an advanced in vivo cross-linking mass spectrometry platform to study the cellular interactome of living bacterial cells. It is based on in vivo labeling and involves a one-step enrichment by click chemistry on a solid support. Our approach shows an impressive efficiency on Neisseria meningitidis, leading to the identification of about 3300 cross-links for the LC-MS/MS analysis of a biological triplicate using a benchtop high-resolution Orbitrap mass spectrometer. Highly dynamic multiprotein complexes were successfully captured and characterized in all bacterial compartments, showing the great potential and precision of our proteome-wide approach. Our workflow paves new avenues for the large-scale and nonbiased analysis of protein-protein interactions. All raw data, databases, and processing parameters are available on ProteomeXchange via PRIDE repository (data set identifier PXD021553).
Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Cromatografía Liquida , Reactivos de Enlaces Cruzados , Complejos MultiproteicosRESUMEN
The human pineal gland regulates day-night dynamics of multiple physiological processes, especially through the secretion of melatonin. Using mass-spectrometry-based proteomics and dedicated analysis tools, we identify proteins in the human pineal gland and analyze systematically their variation throughout the day and compare these changes in the pineal proteome between control specimens and donors diagnosed with autism. Results reveal diverse regulated clusters of proteins with, among others, catabolic carbohydrate process and cytoplasmic membrane-bounded vesicle-related proteins differing between day and night and/or control versus autism pineal glands. These data show novel and unexpected processes happening in the human pineal gland during the day/night rhythm as well as specific differences between autism donor pineal glands and those from controls.
Asunto(s)
Trastorno Autístico/metabolismo , Ritmo Circadiano , Glándula Pineal/metabolismo , Proteínas/metabolismo , Proteoma , Proteómica , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Trastorno Autístico/diagnóstico , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Estudios de Casos y Controles , Humanos , Glándula Pineal/fisiopatología , Mapas de Interacción de Proteínas , Factores de TiempoRESUMEN
MOTIVATION: We present the first tool for unbiased quality control of top-down proteomics datasets. Our tool can select high-quality top-down proteomics spectra, serve as a gateway for building top-down spectral libraries and, ultimately, improve identification rates. RESULTS: We demonstrate that a twofold rate increase for two E. coli top-down proteomics datasets may be achievable. AVAILABILITY AND IMPLEMENTATION: http://patternlabforproteomics.org/tdgc, freely available for academic use. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Proteómica , Escherichia coli , Programas Informáticos , Espectrometría de Masas en TándemRESUMEN
Once translocated into the cytosol of target cells, the catalytic domain (AC) of the adenylate cyclase toxin (CyaA), a major virulence factor of Bordetella pertussis, is potently activated by binding calmodulin (CaM) to produce supraphysiological levels of cAMP, inducing cell death. Using a combination of small-angle X-ray scattering (SAXS), hydrogen/deuterium exchange mass spectrometry (HDX-MS), and synchrotron radiation circular dichroism (SR-CD), we show that, in the absence of CaM, AC exhibits significant structural disorder, and a 75-residue-long stretch within AC undergoes a disorder-to-order transition upon CaM binding. Beyond this local folding, CaM binding induces long-range allosteric effects that stabilize the distant catalytic site, whilst preserving catalytic loop flexibility. We propose that the high enzymatic activity of AC is due to a tight balance between the CaM-induced decrease of structural flexibility around the catalytic site and the preservation of catalytic loop flexibility, allowing for fast substrate binding and product release. The CaM-induced dampening of AC conformational disorder is likely relevant to other CaM-activated enzymes.