Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Hum Genet ; 99(6): 1325-1337, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912044

RESUMEN

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.


Asunto(s)
Epilepsia/genética , Epilepsia/metabolismo , Homeostasis/genética , Mutación , Proteínas/genética , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Adolescente , Carnosina/análogos & derivados , Carnosina/metabolismo , Células Cultivadas , Niño , Preescolar , Exoma/genética , Femenino , Fibroblastos , Homocigoto , Humanos , Lactante , Masculino , Linaje , Prolina/metabolismo , Vitamina B 6/sangre
2.
Liver Transpl ; 17(6): 661-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21618686

RESUMEN

Propionic acidemia (PA) is a rare inherited disorder of branched chain amino acid metabolism; despite improvements in conventional medical management, the long-term outcome remains disappointing. Liver transplantation (LT) has been proposed to minimize the risk of further metabolic decompensations and to improve the quality of life. We performed a retrospective review of all children with PA who underwent LT between 1987 and 2008. Five children were identified with a median age of 1.2 years (range = 0.7-4.1 years) at referral. Four of the children presented clinically at 3 weeks of age or less, and 1 child was diagnosed prenatally. All had metabolic acidosis and hyperammonemia. Two had seizures and required intensive care; this care included inotropic support and continuous venovenous hemofiltration in 1 child. The children were considered for elective LT for the following reasons: frequent metabolic decompensations (2), previous sibling death (2), and elective management (1). One child underwent auxiliary LT, and 4 children received orthotopic grafts (1 living related graft). The median age at LT was 1.5 years (range = 0.8-7.0 years). There was 1 retransplant 3 months after LT due to hepatic artery thrombosis. One year after LT, 1 patient suffered a metabolic stroke with minimal residual neurology. After a median follow-up of 7.3 years (range = 2.2-15.0 years), all the children had normal graft function and a good quality of life with a protein-unrestricted diet and no further metabolic decompensations. In conclusion, LT has a role in the management of PA: it reduces the risk of metabolic decompensation and improves the quality of life. The potential for the development of metabolic sequelae is not completely eliminated.


Asunto(s)
Trasplante de Hígado , Acidemia Propiónica/cirugía , Calidad de Vida , Niño , Preescolar , Femenino , Rechazo de Injerto/epidemiología , Humanos , Incidencia , Lactante , Masculino , Estudios Retrospectivos , Medición de Riesgo , Trombosis/epidemiología , Resultado del Tratamiento
3.
EBioMedicine ; 30: 86-93, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29506874

RESUMEN

Mutations in the m.13094T>C MT-ND5 gene have been previously described in three cases of Leigh Syndrome (LS). In this retrospective, international cohort study we identified 20 clinically affected individuals (13 families) and four asymptomatic carriers. Ten patients were deceased at the time of analysis (median age of death was 10years (range: 5·4months-37years, IQR=17·9years). Nine patients manifested with LS, one with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and one with Leber hereditary optic neuropathy. The remaining nine patients presented with either overlapping syndromes or isolated neurological symptoms. Mitochondrial respiratory chain activity analysis was normal in five out of ten muscle biopsies. We confirmed maternal inheritance in six families, and demonstrated marked variability in tissue segregation, and phenotypic expression at relatively low blood mutant loads. Neuropathological studies of two patients manifesting with LS/MELAS showed prominent capillary proliferation, microvacuolation and severe neuronal cell loss in the brainstem and cerebellum, with conspicuous absence of basal ganglia involvement. These findings suggest that whole mtDNA genome sequencing should be considered in patients with suspected mitochondrial disease presenting with complex neurological manifestations, which would identify over 300 known pathogenic variants including the m.13094T>C.


Asunto(s)
Encéfalo/patología , Complejo I de Transporte de Electrón/genética , Proteínas Mitocondriales/genética , Mutación/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Niño , Estudios de Cohortes , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Síndrome , Adulto Joven
4.
Orphanet J Rare Dis ; 8: 96, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-23829769

RESUMEN

BACKGROUND: SURF1 deficiency, a monogenic mitochondrial disorder, is the most frequent cause of cytochrome c oxidase (COX) deficient Leigh syndrome (LS). We report the first natural history study of SURF1 deficiency. METHODS: We conducted a multi-centre case notes review of 44 SURF1-deficient patients from ten different UK centres and two Australian centres. Survival data for LRPPRC-deficient LS and nuclear-encoded complex I-deficient LS patients were obtained from previous publications. The survival of SURF1-deficient patients was compared with these two groups using Kaplan-Meier survival analysis and logrank test. RESULTS: The majority of patients (32/44, 73%) presented in infancy (median 9.5 months). Frequent symptoms were poor weight gain (95%, median age 10 months), hypotonia (93%, median age 14 months), poor feeding/vomiting (89%, median age 10 months), developmental delay (88%, median age 14 months), developmental regression (71%, median age 19 months), movement disorder (52%, median age 24 months), oculomotor involvement (52%, median age 29 months) and central respiratory failure (78%, median age 31 months). Hypertrichosis (41%), optic atrophy (23%), encephalopathy (20%), seizures (14%) and cardiomyopathy (2%) were observed less frequently. CONCLUSIONS: SURF1-deficient patients have a homogeneous clinical and biochemical phenotype. Early recognition is essential to expedite diagnosis and enable prenatal diagnosis.


Asunto(s)
Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Proteínas de la Membrana/deficiencia , Proteínas Mitocondriales/deficiencia , Adolescente , Adulto , Niño , Preescolar , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Lactante , Recién Nacido , Enfermedad de Leigh/genética , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA