RESUMEN
Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX) with inorganic sulfate aerosols contributes substantially to secondary organic aerosol (SOA) formation, which constitutes a large mass fraction of atmospheric fine particulate matter (PM2.5). However, the atmospheric chemical sinks of freshly generated IEPOX-SOA particles remain unclear. We examined the role of heterogeneous oxidation of freshly generated IEPOX-SOA particles by gas-phase hydroxyl radical (â¢OH) under dark conditions as one potential atmospheric sink. After 4 h of gas-phase â¢OH exposure (â¼3 × 108 molecules cm-3), chemical changes in smog chamber-generated IEPOX-SOA particles were assessed by hydrophilic interaction liquid chromatography coupled with electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (HILIC/ESI-HR-QTOFMS). A comparison of the molecular-level compositional changes in IEPOX-SOA particles during aging with or without â¢OH revealed that decomposition of oligomers by heterogeneous â¢OH oxidation acts as a sink for â¢OH and maintains a reservoir of low-volatility compounds, including monomeric sulfate esters and oligomer fragments. We propose tentative structures and formation mechanisms for previously uncharacterized SOA constituents in PM2.5. Our results suggest that this â¢OH-driven renewal of low-volatility products may extend the atmospheric lifetimes of particle-phase IEPOX-SOA by slowing the production of low-molecular weight, high-volatility organic fragments and likely contributes to the large quantities of 2-methyltetrols and methyltetrol sulfates reported in PM2.5.
Asunto(s)
Contaminantes Atmosféricos , Sulfatos , Sulfatos/química , Atmósfera/química , Hemiterpenos , Butadienos , Aerosoles/química , Material Particulado/análisis , Polvo/análisis , Oxidación-Reducción , Estrés Oxidativo , Contaminantes Atmosféricos/análisisRESUMEN
Organosulfates (OSs), also referred to as organic sulfate esters, are well-known and ubiquitous constituents of atmospheric aerosol particles. Commonly, they are assumed to form upon mixing of air masses of biogenic and anthropogenic origin, that is, through multiphase reactions between organic compounds and acidic sulfate particles. However, in contrast to this simplified picture, recent studies suggest that OSs may also originate from purely anthropogenic precursors or even directly from biomass and fossil fuel burning. Moreover, besides classical OS formation pathways, several alternative routes have been discovered, suggesting that OS formation possibly occurs through a wider variety of formation mechanisms in the atmosphere than initially expected. During the past decade, OSs have reached a constantly growing attention within the atmospheric science community with evermore studies reporting on large numbers of OS species in ambient aerosol. Nonetheless, estimates on OS concentrations and implications on atmospheric physicochemical processes are still connected to large uncertainties, calling for combined field, laboratory, and modeling studies. In this Critical Review, we summarize the current state of knowledge in atmospheric OS research, discuss unresolved questions, and outline future research needs, also in view of reductions of anthropogenic sulfur dioxide (SO2) emissions. Particularly, we focus on (1) field measurements of OSs and measurement techniques, (2) formation pathways of OSs and their atmospheric relevance, (3) transformation, reactivity, and fate of OSs in atmospheric particles, and (4) modeling efforts of OS formation and their global abundance.
Asunto(s)
Atmósfera , Dióxido de Azufre , Aerosoles , Compuestos Orgánicos , SulfatosRESUMEN
Organic aerosols can exist as aqueous droplets, with variable water content depending on their composition and environmental conditions (e.g., relative humidity (RH)). Recent laboratory studies have revealed that oxidation kinetics in highly concentrated droplets can be much slower than those in dilute solutions. However, it remains unclear whether aerosol phase water affects the formation of reaction products physically and/or chemically. In this work, we investigate the role of aerosol phase water on the heterogeneous chemistry of aqueous organic droplets consisting of 2-methylglutaric acid (2-MGA), measuring the reaction kinetics and the reaction products upon heterogeneous OH oxidation over a range of RH. An atmospheric pressure soft ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer is used to obtain real-time molecular information on the reaction products. Aerosol mass spectra show that the same reaction products are formed at all measured RH. At a given reaction extent of the parent 2-MGA, the aerosol composition is independent of RH. These results suggest the aerosol phase water does not alter reaction mechanisms significantly. Kinetic measurements find that the effective OH uptake coefficient, γeff, decreases with decreasing RH below 72%. Isotopic exchange measurements performed using aerosol optical tweezers reveal water diffusion coefficients in the 2-MGA droplets to be 3.0 × 10-13 to 8.0 × 10-13 m2 s-1 over the RH range of 47-58%. These values are comparable to those of other viscous organic aerosols (e.g., citric acid), indicating that 2-MGA droplets are likely to be viscous at low humidity. Smaller γeff at low RH is likely attributed to the slower diffusion of reactants within the droplets. Taken together, the observed relationship between the γeff and RH is likely attributed to changes in aerosol viscosity rather than changes in reaction mechanisms.
RESUMEN
Oxygenated organic molecules are abundant in atmospheric aerosols and are transformed by oxidation reactions near the aerosol surface by gas-phase oxidants such as hydroxyl (OH) radicals. To gain better insights into how the structure of an organic molecule, particularly in the presence of hydroxyl groups, controls the heterogeneous reaction mechanisms of oxygenated organic compounds, this study investigates the OH-radical initiated oxidation of aqueous tartaric acid (C4H6O6) droplets using an aerosol flow tube reactor. The molecular composition of the aerosols before and after reaction is characterized by a soft atmospheric pressure ionization source (Direct Analysis in Real Time) coupled with a high-resolution mass spectrometer. The aerosol mass spectra reveal that four major reaction products are formed: a single C4 functionalization product (C4H4O6) and three C3 fragmentation products (C3H4O4, C3H2O4, and C3H2O5). The C4 functionalization product does not appear to originate from peroxy radical self-reactions but instead forms via an α-hydroxylperoxy radical produced by a hydrogen atom abstraction by OH at the tertiary carbon site. The proximity of a hydroxyl group to peroxy group enhances the unimolecular HO2 elimination from the α-hydroxylperoxy intermediate. This alcohol-to-ketone conversion yields 2-hydroxy-3-oxosuccinic acid (C4H4O6), the major reaction product. While in general, C-C bond scission reactions are expected to dominate the chemistry of organic compounds with high average carbon oxidation states (OSC), our results show that molecular structure can play a larger role in the heterogeneous transformation of tartaric acid (OSC = 1.5). These results are also compared with two structurally related dicarboxylic acids (succinic acid and 2,3-dimethylsuccinic acid) to elucidate how the identity and location of functional groups (methyl and hydroxyl groups) alter heterogeneous reaction mechanisms.
RESUMEN
A key challenge in understanding the transformation chemistry of organic aerosols is to quantify how changes in molecular structure alter heterogeneous reaction mechanisms. Here we use two model systems to investigate how the relative locations of branched methyl groups control the heterogeneous reaction of OH with two isomers of dimethylsuccinic acid (C6H10O4). 2,2-Dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA) differ only in the location of the two branched methyl groups, thus enabling a closer inspection of how the distribution of carbon reaction sites impacts the chemical evolution of the aerosol. The heterogeneous reaction of OH with 2,3-DMSA (reactive OH uptake coefficient, γ = 0.99 ± 0.16) is found to be â¼2 times faster than that of 2,2-DMSA (γ = 0.41 ± 0.07), which is attributed to the larger stability of the tertiary alkyl radical produced by the initial OH abstraction reaction. While changes in the average aerosol oxidation state (OSC) and the carbon number (NC) are similar for both isomers upon reaction, significant differences are observed in the underlying molecular distribution of reaction products. The reaction of OH with the 2,3-DMSA isomer produces two major reaction products: a product containing a new alcohol functional group (C6H10O5) formed by intermolecular hydrogen abstraction and a C5 compound formed via carbon-carbon (C-C) bond scission. Both of these reaction products are explained by the formation and subsequent reaction of a tertiary alkoxy radical. In contrast, the OH reaction with the 2,2-DMSA isomer forms four dominant reaction products, the majority of which are C5 scission products. The difference in the quantity of C-C bond scission products for these two isomers is unexpected since decomposition is assumed to be favored for the isomer with the most tertiary carbon sites (i.e. 2,3-DMSA). For both isomers, there is a much larger abundance of C6 alcohol relative to C6 ketone products, which suggests that the presence of the two branched methyl groups favors alkoxy formation from peroxy radical self-reactions. These results reveal how the isomeric structure ultimately controls the overall competition between functionalization and fragmentation in these model systems.
RESUMEN
Chemical transformation of 2-methyltetrol sulfates (2-MTS), key isoprene-derived secondary organic aerosol (SOA) constituents, through heterogeneous hydroxyl radical (â¢OH) oxidation can result in the formation of previously unidentified atmospheric organosulfates (OSs). However, detected OSs cannot fully account for the sulfur content released from reacted 2-MTS, indicating the existence of sulfur in forms other than OSs such as inorganic sulfates. This work investigated the formation of inorganic sulfates through heterogeneous â¢OH oxidation of 2-MTS aerosols. Remarkably, high yields of inorganic sulfates, defined as the moles of inorganic sulfates produced per mole of reacted 2-MTS, were observed in the range from 0.48 ± 0.07 to 0.68 ± 0.07. These could be explained by the production of sulfate (SO4 â¢-) and sulfite (SO3 â¢-) radicals through the cleavage of C-O(S) and (C)O-S bonds, followed by aerosol-phase reactions. Additionally, nonsulfated products resulting from bond cleavage were likely volatile and evaporated into the gas phase, as evidenced by the observed aerosol mass loss (≤25%) and concurrent size reduction upon oxidation. This investigation highlights the significant transformation of sulfur from its organic to inorganic forms during the heterogeneous oxidation of 2-MTS aerosols, potentially influencing the physicochemical properties and environmental impacts of isoprene-derived SOAs.
RESUMEN
Direct Analysis in Real Time (DART) mass spectrometry is an atmospheric pressure ionization technique suitable for in situ chemical analysis of organic aerosols. Here, mass spectra are obtained by introducing a stream of nanometer-sized aerosols into the ionization region, which is an open space between the ion source and the atmospheric inlet of mass spectrometer. Model single component aerosols are used to show how the aerosol size and volatility influence the measured ion signals at different DART gas temperatures. The results show that for equivalent aerosol mass concentrations, the ion signal scales with particle surface area, with smaller diameter oleic acid aerosols yielding higher ion signals relative to larger diameter aerosols. For the aerosols of the same size, but different vapor pressures, the ion signal is larger for more volatile succinic acid aerosols than less volatile adipic and suberic acid particles. From the measured changes in aerosol size, produced by the DART source, the radial probing depth for these model aerosols range from 1 to 10 nm, the magnitude of which depends upon the physiochemical properties of the aerosols and DART gas temperature. An aerosol evaporation model reveals that the ion signal is correlated with changes in aerosol size and depends upon the total quantity of evaporated aerosol mass, consistent with a mechanism in which gas-phase molecules are first desorbed from the aerosol surface prior to ionization. The results of this work serve as a basis for future investigations of the mass spectra, ionization pathways, and probing depth of the aerosols using DART.
RESUMEN
Organosulfates comprise up to 30% of the organic fraction of aerosol. Organosulfate aerosol physical properties, such as water activity, density, refractive index, and surface tension, are key to predicting their impact on global climate. However, current understanding of these properties is limited. Here, we measure the physical properties of aqueous solutions containing sodium methyl or ethyl sulfate and parameterise the data as a function of solute concentration. The experimental data are compared to available literature data for organosulfates, as well as salts (sodium sulfate and sodium bisulfate) and organics (short alkyl chain length alcohols and carboxylic acids) to determine if the physical properties of organosulfates can be approximated by molecules of similar functionality. With the exception of water activity, we find that organosulfates have intermediate physical properties between those of the salts and short alkyl chain organics. This work highlights the importance of measuring and developing models for the physical properties of abundant atmospheric organosulfates in order to better describe aerosol's impact on climate.
RESUMEN
Organosulfates (OSs), characterized with a sulfate ester group (R-OSO3-), are abundant constituents in secondary organic aerosols. Recent laboratory-based investigations have revealed that OSs can undergo efficient chemical transformation through heterogeneous oxidation by hydroxyl radicals (ËOH, interchangeably termed as OH in this article), which freshly derives functionalized and fragmented OSs. The reaction not only contributes to the presence of structurally transformed OSs in the atmosphere of which sources were unidentified, but it also leads to the formation of inorganic sulfates (e.g., SO42-) with profound implication on the form of aerosol sulfur. In this article, we review the current state of knowledge regarding the heterogeneous OH oxidation of OSs based on state-of-the-art designs of experiments, computational approaches, and chemical analytical techniques. Here, we discuss the formation potential of new OSs and SO42-, in light of the influence of diverse OS structures on the relative importance of different reaction pathways. We propose future research directions to advance our mechanistic understanding of these reactions, taking into account aerosol matrix effects, interactions with other atmospheric pollutants, and the incorporation of experimental findings into atmospheric chemical transport models.
RESUMEN
The chemical properties of fresh and aged aerosol emitted during controlled vehicular exhaust emissions were characterized in the analysis. Pyrene (10417.1 ± 534.9 ng kg-1) is the most abundant of all analyzed compounds in total fresh emission and succinic acid (57359.8 ± 4000.3 ng kg-1) is for the total aged emission. The fresh emission factors (EFfresh) of all compounds in the n-alkanes group demonstrate higher average emissions for the two vehicles with EURO 3 standard compared to the other vehicles. The EFfresh for benzo [a]pyrene is in descending order: G1 (183.1 ± 144.7 ng kg-1) > G3 (103.4 ± 60.1 ng kg-1) > G4 (91.2 ± 80.1 ng kg-1) > G2 (88.6 ± 93.9 ng kg-1). Aged/fresh (A/F) emission ratios (>20) confirmed that these diacid compounds are generated by the photooxidation of primary pollutants that emitted from gasoline combustions. High A/F ratios (>200) in phthalic acid, isophthalic acid and terephthalic acid under idling mode imply relatively more intense photochemical reactions for their productions compared with other chemical groups. Strong positive correlations (r > 0.6) were observed between the degradation of toluene and formations of pinonic acid, succinic acid, adipic acid, terephthalic acid, glutaric acid and citramalic acid after the aging process, suggesting possible photooxidation of toluene that can lead to secondary organic aerosol (SOA) formation in the urban atmosphere. The findings demonstrate that vehicle emission standards for pollution in relation to the change of particulate matter chemical compositions and SOA formations. The results warrant a need for regulated reformulation for such vehicles.
Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Hong Kong , Ácido Succínico/análisis , Material Particulado/análisis , Gasolina/análisis , Aerosoles/análisis , Pirenos/análisisRESUMEN
Exhaust emissions from gasoline vehicles are one of the major contributors to aerosol particles observed in urban areas. It is well-known that these tiny particles are associated with air pollution, climate forcing, and adverse health effects. However, their toxicity and bioreactivity after atmospheric ageing are less constrained. The aim of the present study was to investigate the chemical and toxicological properties of fresh and aged particulate matter samples derived from gasoline exhaust emissions. Chemical analyses showed that both fresh and aged PM samples were rich in organic carbon, and the dominating chemical species were n-alkane and polycyclic aromatic hydrocarbons. Comparisons between fresh and aged samples revealed that the latter contained larger amounts of oxygenated compounds. In most cases, the bioreactivity induced by the aged PM samples was significantly higher than that induced by the fresh samples. Moderate to weak correlations were identified between chemical species and the levels of biomarkers in the fresh and aged PM samples. The results of the stepwise regression analysis suggested that n-alkane and alkenoic acid were major contributors to the increase in lactate dehydrogenase (LDH) levels in the fresh samples, while polycyclic aromatic hydrocarbons (PAHs) and monocarboxylic acid were the main factors responsible for such increase in the aged samples.
Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Alcanos/análisis , Carbono/análisis , Gasolina/análisis , Gasolina/toxicidad , Hong Kong , Lactato Deshidrogenasas/análisis , Material Particulado/análisis , Material Particulado/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Policíclicos Aromáticos/toxicidad , Emisiones de Vehículos/análisis , Emisiones de Vehículos/toxicidadRESUMEN
Organosulfate species have recently been identified as a potentially significant class of secondary organic aerosol (SOA) species, yet little is known about their behavior in the atmosphere. In this work, organosulfates were observed in individual ambient aerosols using single particle mass spectrometry in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Organosulfates derived from biogenically produced isoprene were detected as deprotonated molecular ions in negative-ion spectra measured by aerosol time-of-flight mass spectrometry; comparison to high-resolution mass spectrometry data obtained from filter samples corroborated the peak assignments. The size-resolved chemical composition measurements revealed that organosulfate species were mostly detected in submicrometer aerosols and across a range of aerosols from different sources, consistent with secondary reaction products. Detection of organosulfates in a large fraction of negative-ion ambient spectra - ca. 90-95% during ANARChE and ~65% of submicrometer particles in AMIGAS - highlights the ubiquity of organosulfate species in the ambient aerosols of biogenically influenced urban environments.
Asunto(s)
Aerosoles/química , Atmósfera/química , Butadienos/análisis , Hemiterpenos/análisis , Espectrometría de Masas/métodos , Material Particulado/química , Pentanos/análisis , Compuestos de Azufre/análisis , Gases/análisis , GeorgiaRESUMEN
Organosulfate species have recently gained attention for their potentially significant contribution to secondary organic aerosol (SOA); however, their temporal behavior in the ambient atmosphere has not been probed in detail. In this work, organosulfates derived from isoprene were observed in single particle mass spectra in Atlanta, GA during the 2002 Aerosol Nucleation and Characterization Experiment (ANARChE) and the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS). Real-time measurements revealed that the highest organosulfate concentrations occurred at night under a stable boundary layer, suggesting gas-to-particle partitioning and subsequent aqueous-phase processing of the organic precursors played key roles in their formation. Further analysis of the diurnal profile suggests possible contributions from multiple production mechanisms, including acid-catalysis and radical-initiation. This work highlights the potential for additional SOA formation pathways in biogenically influenced urban regions to enhance the organic aerosol burden.
Asunto(s)
Aerosoles/química , Butadienos/química , Hemiterpenos/química , Espectrometría de Masas/métodos , Pentanos/química , Ésteres del Ácido Sulfúrico/análisis , Ésteres del Ácido Sulfúrico/química , Aerosoles/análisis , Monitoreo del AmbienteRESUMEN
Concerns over the health risks associated with airborne exposure to ultrafine particles [PM0.1, or nanoparticles (NPs)] call for a comprehensive understanding in the interactions of inhaled NPs along their respiratory journey. We prepare a collection of polyethylene glycol-coated gold nanoparticles that bear defined functional groups commonly identified in atmospheric particulates (Au@PEG-X NPs, where X = OCH3, COOH, NH2, OH, or C12H25). Regardless of the functional group, these â¼50 nm NPs remain colloidally stable following aerosolization and incubation in bronchoalveolar lavage fluid (BALF), without pronouncedly crossing the air-blood barrier. The type of BALF proteins adhered onto the NPs is similar, but the composition of protein corona depends on functional group. By subjecting Balb/c mice to inhalation of Au@PEG-X NPs for 6 h, we demonstrate that the intrapulmonary distribution of NPs among the various types of cells (both found in BALF and isolated from the lavaged lung) and the acute inflammatory responses induced by inhalation are sensitive to the functional group of NPs and postinhalation period (0, 24, or 48 h). By evaluating the pairwise correlations between the three variables of "lung-nano" interactions (protein corona, intrapulmonary cellular-level distribution, and inflammatory response), we reveal strong statistical correlations between the (1) fractions of albumin or carbonyl reductase bound to NPs, (2) associations of inhaled NPs to neutrophils in BALF or macrophages in the lavaged lung, and (3) level of total protein in BALF. Our results provide insights into the effect of functional group on lung-nano interactions and health risks associated with inhalation of PM0.1.
Asunto(s)
Inflamación/patología , Pulmón/patología , Nanopartículas del Metal/química , Corona de Proteínas/metabolismo , Administración por Inhalación , Animales , Líquido del Lavado Bronquioalveolar/citología , Coloides/química , Oro/química , Pulmón/ultraestructura , Masculino , Nanopartículas del Metal/ultraestructura , Ratones , Ratones Endogámicos BALB C , Especificidad de Órganos , Células RAW 264.7 , Distribución TisularRESUMEN
High molecular weight (M(w)) species were observed at substantial intensities in the positive-ion mass spectra in urban Shanghai aerosols collected from a single-particle time-of-flight mass spectrometer (in the m/z range 250-500) during three separate periods over 2007-2009. These species correlate well with the CN(-) mass signal, suggesting that C-N bonds are prevalent and that the observed high-M(w) species are potentially nitrogen-containing organic salts. Anti-correlation with the ambient O(3) concentration suggests that photochemical oxidants are not involved directly in the formation of these species. The Mannich reaction, among amines (or ammonia), formaldehyde, and carbonyls with an adjacent, acidic proton, is proposed as a plausible pathway leading to these organic salts. Although the high-M(w) species observed in the single-particle mass spectra appear to be nitrogen-containing organics, further chemical confirmation is desired to verify if the proposed Mannich reaction can explain the formation of these high-M(w) species in regions where ammonia, amines, and carbonyls are prevalent.
Asunto(s)
Aerosoles/química , Ciudades , Nitrógeno/análisis , Compuestos Orgánicos/análisis , Sales (Química)/análisis , Cromatografía Líquida de Alta Presión , Peso Molecular , Compuestos Orgánicos/química , Sales (Química)/química , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C(5)-alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from approximately 1 to 24 ng m(-3) in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO(x) conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region.
Asunto(s)
Aerosoles/análisis , Butadienos/análisis , Compuestos Epoxi/análisis , Hemiterpenos/análisis , Pentanos/análisis , Aerosoles/química , Atmósfera/química , Butadienos/química , Compuestos Epoxi/química , Cromatografía de Gases y Espectrometría de Masas , Gases/química , Hemiterpenos/química , Material Particulado/análisis , Pentanos/química , Sudeste de Estados UnidosRESUMEN
The initial phase (solid or aqueous droplet) of aerosol particles prior to activation is among the critical factors in determining their cloud condensation nuclei (CCN) activity. Single-particle levitation in an electrodynamic balance (EDB)was used to measure the phase transitions and hygroscopic properties of aerosol particles of 11 organic compounds with different solubilities (10(-1) to 102 g solute/100 g water). We use these data and other literature data to relate the CCN activity and hygroscopicity of organic compounds with different solubilities. The EDB data show that glyoxylic acid, 4-methylphthalic acid, monosaccharides (fructose and mannose), and disaccharides (maltose and lactose) did not crystallize and existed as metastable droplets at low relative humidity (RH). Hygroscopic data from this work and in the literature support earlier studies showing that the CCN activities of compounds with solubilities down to the order of 10(-1) g solute/100 g water can be predicted by standard Köhler theory with the assumption of complete dissolution of the solute at activation. We also demonstrate the use of evaporation data (or efflorescence data), which provides information on the water contents of metastable solutions below the compound deliquescence RH that can be extrapolated to higher dilutions, to predict the CCN activity of organic particles, particularly for sparingly soluble organic compounds that do not deliquesce at RH achievable in the EDB and in the hygroscopic tandem differential mobility analyzer.
Asunto(s)
Compuestos Orgánicos/química , Agua/química , Aerosoles , SolubilidadRESUMEN
Atmospheric particles, which may have an organic coating, exhibit cyclical phase changes of deliquescence and crystallization in response to changes in the ambient relative humidity(RH). Here, we measured the hygroscopicity and Raman spectra of solid ammonium sulfate ((NH4)2SO4) particles initially coated with water-soluble glutaric acid in two consecutive cycles of deliquescence and crystallization utilizing an electrodynamic balance. (NH4)2SO4 particles with glutaric acid coating (49 wt % glutaric acid) had different hygroscopicity and morphology in the two cycles. Once the particles deliquesced, the dissolution of the solid (NH4)2SO4 core and the glutaric acid coating formed mixed (NH4)2SO4-glutaric acid solution droplets, which was confirmed by Raman characterization. Coating studies with either deliquescence or crystallization measurements, or one complete cycle of these two measurements may not fully assess the effects of the organic coatings on aerosol hygroscopicity. We also present an analysis on the kinetic and chemical effects of organic coating on aerosol hygroscopicity. Glutaric acid coating does not impede the evaporation and condensation rates of water molecules compared to the rates of (NH4)2S04 particles in the two cycles. The coating likely affects the hygroscopicity of aerosol particles through dissolution and its chemical interactions with (NH4)2S04.
Asunto(s)
Sulfato de Amonio/química , Glutaratos/química , Humedad , Adsorción , Cristalización , Ecología , Espectrometría Raman , Agua , HumectabilidadRESUMEN
Amino acids and organic species derived from biomass burning can potentially affect the hygroscopicity and cloud condensation activities of aerosols. The hygroscopicity of seven amino acids (glycine, alanine, serine, glutamine, threonine, arginine, and asparagine) and three organic species most commonly detected in biomass burning aerosols (levoglucosan, mannosan, and galactosan) were measured using an electrodynamic balance. Crystallization was observed in the glycine, alanine, serine, glutamine, and threonine particles upon evaporation of water, while no phase transition was observed in the arginine and asparagine particles even at 5% relative humidity (RH). Water activity data from these aqueous amino acid particles, except arginine and asparagine, was used to revise the interaction parameters in UNIQUAC functional group activity coefficients to give predictions to within 15% of the measurements. Levoglucosan, mannosan, and galactosan particles did not crystallize nor did they deliquesce. They existed as highly concentrated liquid droplets at low RH, suggesting that biomass burning aerosols retain water at low RH. In addition, these particles follow a very similar pattern in hygroscopic growth. A generalized growth law (Gf = (1 - RH/100)-0.095) is proposed for levoglucosan, mannosan, and galactosan particles.
Asunto(s)
Aerosoles/química , Contaminantes Atmosféricos/análisis , Aminoácidos/análisis , Fuentes de Energía Bioeléctrica , Biomasa , Monitoreo del Ambiente , Incineración , Solubilidad , Agua/químicaRESUMEN
Water-soluble macromolecular polyacids can play a potentially important role in the hygroscopic properties of atmospheric aerosols. These acids have molecular structures similar to natural fulvic acids (FA) (or humic acids) and are referred to as humic-like substances (HULIS). In this study, the hygroscopicity of HULIS and the mixture of HULIS and sodium chloride (NaCl) and that of HULIS and ammonium sulfate (AS) aerosols at a mass ratio of 1:1 are studied using two natural FA: the Nordic Aquatic Fulvic Acid (NAFA) and the Suwannee River Fulvic Acid (SRFA) as model compounds in an electrodynamic balance. NAFA and SRFA both absorbed and desorbed water reversibly without crystallization and retained water at a relative humidity (RH) < 10%. NAFA and SRFA have a mass growth ratio of 1.25 and 1.45 from RH = 10% to RH = 90%, respectively. However, these results are different from those of another natural FA (the Nordic River Fulvic Acid Reference) in the literature. The differences are possibly due to the differences in the chemical composition of the natural FA, which depends on their sources and the isolation methods. These results suggest that a standardization of the isolation methods of HULIS is needed for better understanding of their atmospheric properties and environmental impacts. In general, the deliquescence and crystallization RH of FA-inorganic mixtures are comparable with those of their respective pure inorganic species. Since FA are less hygroscopic than NaCl and AS, all mixtures absorb less water compared to their respective pure inorganic species of equal particle mass. The FA-AS mixtures have a larger water uptake than the sum of those of the FA and AS individually following a simple additivity rule as noninteracting species at RH = 90%. This enhancement effect increases as the RH decreases. There is no such enhancement effect for the FA-NaCl mixtures until RH is below 90%. These results reveal that the effect of the interactions between FA and inorganic species on the water uptake of the mixtures, in general, is a function of RH.