Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732926

RESUMEN

Muscle synergy has been widely acknowledged as a possible strategy of neuromotor control, but current research has ignored the potential inhibitory components in muscle synergies. Our study aims to identify and characterize the inhibitory components within motor modules derived from electromyography (EMG), investigate the impact of aging and motor expertise on these components, and better understand the nervous system's adaptions to varying task demands. We utilized a rectified latent variable model (RLVM) to factorize motor modules with inhibitory components from EMG signals recorded from ten expert pianists when they played scales and pieces at different tempo-force combinations. We found that older participants showed a higher proportion of inhibitory components compared with the younger group. Senior experts had a higher proportion of inhibitory components on the left hand, and most inhibitory components became less negative with increased tempo or decreased force. Our results demonstrated that the inhibitory components in muscle synergies could be shaped by aging and expertise, and also took part in motor control for adapting to different conditions in complex tasks.


Asunto(s)
Envejecimiento , Electromiografía , Músculo Esquelético , Humanos , Electromiografía/métodos , Envejecimiento/fisiología , Músculo Esquelético/fisiología , Adulto , Masculino , Femenino , Anciano , Adulto Joven , Persona de Mediana Edad
2.
Sensors (Basel) ; 21(16)2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34451039

RESUMEN

The present study compared the effect between walking exercise and a newly developed sensor-based gait retraining on the peaks of knee adduction moment (KAM), knee adduction angular impulse (KAAI), knee flexion moment (KFM) and symptoms and functions in patients with early medial knee osteoarthritis (OA). Eligible participants (n = 71) with early medial knee OA (Kellgren-Lawrence grade I or II) were randomized to either walking exercise or gait retraining group. Knee loading-related parameters including KAM, KAAI and KFM were measured before and after 6-week gait retraining. We also examined clinical outcomes including visual analog pain scale (VASP) and Knee Injury and Osteoarthritis Outcome Score (KOOS) at each time point. After gait retraining, KAM1 and VASP were significantly reduced (both Ps < 0.001) and KOOS significantly improved (p = 0.004) in the gait retraining group, while these parameters remained similar in the walking exercise group (Ps ≥ 0.448). However, KAM2, KAAI and KFM did not change in both groups across time (Ps ≥ 0.120). A six-week sensor-based gait retraining, compared with walking exercise, was an effective intervention to lower medial knee loading, relieve knee pain and improve symptoms for patients with early medial knee OA.


Asunto(s)
Osteoartritis de la Rodilla , Fenómenos Biomecánicos , Marcha , Humanos , Articulación de la Rodilla , Osteoartritis de la Rodilla/terapia , Caminata
3.
Neurobiol Learn Mem ; 136: 74-85, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27664716

RESUMEN

There is considerable evidence to suggest early life experiences, such as maternal separation (MS), play a role in the prevalence of emotional dysregulation and cognitive impairment. At the same time, optimal decision making requires functional integrity between the amygdala and anterior cingulate cortex (ACC), and any dysfunction of this system is believed to induce decision-making deficits. However, the impact of MS on decision-making behavior and the underlying neurophysiological mechanisms have not been thoroughly studied. As such, we consider the impact of MS on the emotional and cognitive functions of rats by employing the open-field test, elevated plus-maze test, and rat gambling task (RGT). Using multi-channel recordings from freely behaving rats, we assessed the effects of MS on the large scale synchrony between the basolateral amygdala (BLA) and the ACC; while also characterizing the relationship between neural spiking activity and the ongoing oscillations in theta frequency band across the BLA and ACC. The results indicated that the MS rats demonstrated anxiety-like behavior. While the RGT showed a decrease in the percentage of good decision-makers, and an increase in the percentage of poor decision-makers. Electrophysiological data revealed an increase in the total power in the theta band of the LFP in the BLA and a decrease in theta power in the ACC in MS rats. MS was also found to disrupt the spike-field coherence of the ACC single unit spiking activity to the ongoing theta oscillations in the BLA and interrupt the synchrony in the BLA-ACC pathway. We provide specific evidence that MS leads to decision-making deficits that are accompanied by alteration of the theta band LFP in the BLA-ACC circuitries and disruption of the neural network integrity. These observations may help revise fundamental notions regarding neurophysiological biomarkers to treat cognitive impairment induced by early life stress.


Asunto(s)
Ansiedad/fisiopatología , Complejo Nuclear Basolateral/fisiopatología , Disfunción Cognitiva/fisiopatología , Toma de Decisiones/fisiología , Sincronización de Fase en Electroencefalografía/fisiología , Giro del Cíngulo/fisiopatología , Privación Materna , Ritmo Teta/fisiología , Animales , Ansiedad/etiología , Conducta Animal/fisiología , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Embarazo , Ratas , Ratas Sprague-Dawley
4.
IEEE Signal Process Lett ; 21(10): 1192-1196, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28344434

RESUMEN

Dementia is one of the most common neurological disorders among the elderly. Identifying those who are of high risk suffering dementia is important for early diagnosis in order to slow down the disease progression and help preserve some cognitive functions of the brain. To achieve accurate classification, significant amount of subject feature information are involved. Hence identification of demented subjects can be transformed into a pattern classification problem. In this letter, we introduce a graph based semi-supervised learning algorithm for Medical Diagnosis by using partly labeled samples and large amount of unlabeled samples. The new method is derived by a compact graph that can well grasp the manifold structure of medical data. Simulation results show that the proposed method can achieve better sensitivities and specificities compared with other state-of-art graph based semi-supervised learning methods.

5.
Australas J Ultrasound Med ; 27(1): 42-48, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38434542

RESUMEN

Introduction: Clinical verification of rheumatoid vasculitis (RV) persists as a mid-to-late diagnosis with medical imaging or biopsy. Early and subclinical presentations of RV, in particular, can remain underdiagnosed in the absence of adequate diagnostic testing. In this study, the research demonstrated the precursory changes for RV in patients with rheumatoid arthritis (RA) using non-invasive ultrasound imaging of a peripheral vessel. Method: Six participants were recruited: three participants with (RA) and three age- and gender-matched healthy controls. All participants completed a Foot Health Survey Questionnaire (FHSQ), and participants with RA completed a Rheumatoid Arthritis Disease Activity Index-5 (RADAI-5). Bilateral B-mode and Doppler ultrasound of the dorsalis pedis artery (DPA) was performed. The degree of inflammation, lumen and artery diameters, lumen diameter-to-artery diameter ratio and peak systolic velocity in the proximal DPA were compared between the two groups. Results: The mean RADAI-5 score (5.4 ± 0.8 out of 10) indicated moderate disease activity amongst participants with RA. Inflammation was observed in the DPA wall in all participants with RA, compared to no inflammation observed in the control group (Friedmans two-way analysis: χ2 = 15.733, P = 0.003). Differences between groups for inflammation, lumen diameter and lumen diameter-to-artery diameter ratio were found (P < 0.034), without differences for artery diameter and peak systolic velocity (P > 0.605). DPA wall inflammation did not correlate with FHSQ scores (r = -0.770, P = 0.073). Conclusion: Despite moderate RA disease activity, this is the first study to demonstrate the use of ultrasound to observe inflammation in small vessel disease. Our findings suggest ultrasound imaging may be a viable screening tool to demonstrate arterial wall inflammation, indicating the precursory changes of RV.

6.
IEEE Signal Process Lett ; 20(5): 431-434, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-24077217

RESUMEN

Dementia is one of the most common neurological disorders among the elderly. Identifying those who are of high risk suffering dementia is important to the administration of early treatment in order to slow down the progression of dementia symptoms. However, to achieve accurate classification, significant amount of subject feature information are involved. Hence identification of demented subjects can be transformed into a pattern recognition problem with high-dimensional nonlinear datasets. In this paper, we introduce trace ratio linear discriminant analysis (TR-LDA) for dementia diagnosis. An improved ITR algorithm (iITR) is developed to solve the TR-LDA problem. This novel method can be integrated with advanced missing value imputation method and utilized for the analysis of the nonlinear datasets in many real-world medical diagnosis problems. Finally, extensive simulations are conducted to show the effectiveness of the proposed method. The results demonstrate that our method can achieve higher accuracies for identifying the demented patients than other state-of-art algorithms.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38082639

RESUMEN

Brain development is characterized by changes in connections and information processing complexity. These changes inspire the training process of artificial neural network (ANN), which requires adjusting the neuron weights and biases to enhance efficiency in performing a specific task. In this work, we found affinities in the ratio of positive and negative weights in simple ANNs during training with that of excitatory and inhibitory synapses in the cortex. Additionally, we present a graphical representation of simple ANNs formed by pruning unimportant weights and aligning neurons and connections of different layers. Our findings suggest a strong relationship between the accuracy of simple neural network and graphical representation features, with graphical features at the inflection point resembling the graphical representation of the cortex.


Asunto(s)
Redes Neurales de la Computación , Neuronas , Neuronas/fisiología , Sinapsis , Corteza Cerebral
8.
Neurosci Lett ; 814: 137412, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37567410

RESUMEN

Accurate alignment of brain slices is crucial for the classification of neuron populations by brain region, and for quantitative analysis in in vitro brain studies. Current semi-automated alignment workflows require labor intensive labeling of feature points on each slice image, which is time-consuming. To speed up the process in large-scale studies, we propose a method called Deep Learning-Assisted Transformation Alignment (DLATA), which uses deep learning to automatically identify feature points in images after training on a few labeled samples. DLATA only requires approximately 10% of the sample size of other semi-automated alignment workflows. Following feature point recognition, local weighted mean method is used as a geometrical transformation to align slice images for registration, achieving better results with about 4 fewer pixels of error than other semi-automated alignment workflows. DLATA can be retrained and successfully applied to the alignment of other biological tissue slices with different stains, including the typically challenging fluorescent stains. Reference codes and trained models for Nissl-stained coronal brain slices of mice can be found at https://github.com/ALIGNMENT2023/DLATA.


Asunto(s)
Aprendizaje Profundo , Animales , Ratones , Encéfalo , Neuronas , Procesamiento de Imagen Asistido por Computador/métodos
9.
Ultrasound Med Biol ; 49(9): 2199-2202, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37453910

RESUMEN

OBJECTIVE: Assessment of small vessel inflammatory diseases such as rheumatoid vasculitis is challenging. Small arteries such as the dorsalis pedis artery (DPA) are difficult to assess for changes in the arterial wall with medical imaging. Ultrasound imaging is a viable tool for examining the integrity and inflammatory changes in the arterial wall; however, no empirical data on its reliability have been described. METHODS: We measured the intra- and inter-rater reliability of ultrasound measurements across five parameters evaluating arterial integrity of the proximal DPA in participants with and without small vessel disease. We recruited 10 participants with rheumatoid arthritis and 10 healthy controls. Two sonographers using ultrasound independently measured DPA lumen diameter, artery diameter, lumen-to-arterial diameter ratio, arterial Doppler velocity and inflammatory changes in the proximal wall of the DPA. The intraclass correlation coefficient (ICC) was used to evaluate 95% confidence intervals within and between raters. Bland-Altman analyses were used to assess limits of agreement and were compared with minimal clinically important differences (MCID). RESULTS: Four of five selected parameters were found to have excellent intra- and inter-rater reliability within and between raters (ICC = 0.903-0.996). Acceptable reliability was found for measurement of arterial blood flow velocity within raters (ICC = 0.815-0.909), but not between raters (ICC = 0.634). Standard mean errors in all parameters were within minimal clinically important differences. CONCLUSION: Ultrasound imaging has been found to be a reliable method of assessment of arterial integrity and inflammation of the proximal DPA in people with small vessel disease. Evaluation of arterial blood flow velocity requires cautious interpretation.


Asunto(s)
Ultrasonografía Doppler , Enfermedades Vasculares , Humanos , Reproducibilidad de los Resultados , Ultrasonografía/métodos , Arterias , Inflamación/diagnóstico por imagen
10.
Artículo en Inglés | MEDLINE | ID: mdl-38082572

RESUMEN

Distance running related injuries are common, and many ailments have been associated with faulty posture. Conventional measurement of running kinematics requires sophisticated motion capture system in laboratory. In this study, we developed a wearable solution to accurately predict lower limb running kinematics using a single inertial measurement unit placed on the left lower leg. The running data collected from participants was used to train a model using long short-term memory (LSTM) neural networks with an inter-subject approach that predicted lower limb kinematics with an average accuracy of 80.2%, 85.8%, and 69.4% for sagittal hip, knee and ankle joint angles respectively for the ipsilateral limb. A comparable accuracy range was observed for the contralateral limb. The average RMSE (root mean squared error) of sagittal hip, knee and ankle were 8.76°, 13.13°, and 9.67° respectively for the ipsilateral limb. Analysis of contralateral limb kinematics was performed. The model established in this study can be used as a monitoring device to track essential running kinematics in natural running environments. Besides, the wearable solution can be an integral part of a real-time gait retraining biofeedback system for injury prevention and rehabilitation.


Asunto(s)
Marcha , Extremidad Inferior , Humanos , Fenómenos Biomecánicos , Articulación de la Rodilla , Redes Neurales de la Computación
11.
Neuron ; 111(10): 1651-1665.e5, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36924773

RESUMEN

Feeding requires sophisticated orchestration of neural processes to satiate appetite in natural, capricious settings. However, the complementary roles of discrete neural populations in orchestrating distinct behaviors and motivations throughout the feeding process are largely unknown. Here, we delineate the behavioral repertoire of mice by developing a machine-learning-assisted behavior tracking system and show that feeding is fragmented and divergent motivations for food consumption or environment exploration compete throughout the feeding process. An iterative activation sequence of agouti-related peptide (AgRP)-expressing neurons in arcuate (ARC) nucleus, GABAergic neurons in the lateral hypothalamus (LH), and in dorsal raphe (DR) orchestrate the preparation, initiation, and maintenance of feeding segments, respectively, via the resolution of motivational conflicts. The iterative neural processing sequence underlying the competition of divergent motivations further suggests a general rule for optimizing goal-directed behaviors.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Neuronas GABAérgicas , Ratones , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Neuronas GABAérgicas/metabolismo , Apetito , Área Hipotalámica Lateral , Proteína Relacionada con Agouti/metabolismo , Conducta Alimentaria
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4048-4051, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086333

RESUMEN

Deep learning has been applied to enhance the performance of EEG-based brain-computer interface applications. However, the cross-subject variations in EEG signals cause domain shifts and negatively affect the model performance and generalization. Meta-learning algorithms have shown fast new domain adaption in various fields, which may help solve the domain shift problems in EEG. Reptile, with satisfactory performance and low computational costs, stands out from other existing meta-learning algorithms. We integrated Reptile with a deep neural network as Reptile-EEG for the EEG motor imagery tasks, and compared Reptile-EEG with other state-of-the-art models in three motor imagery BCI benchmark datasets. Results show that Reptile-EEGdoes not outperform simple training of deep neural networks in motor imagery BCI tasks.


Asunto(s)
Interfaces Cerebro-Computador , Imaginación , Electroencefalografía/métodos , Imágenes en Psicoterapia , Redes Neurales de la Computación
13.
Artículo en Inglés | MEDLINE | ID: mdl-36342998

RESUMEN

Training deep neural networks (DNNs) typically requires massive computational power. Existing DNNs exhibit low time and storage efficiency due to the high degree of redundancy. In contrast to most existing DNNs, biological and social networks with vast numbers of connections are highly efficient and exhibit scale-free properties indicative of the power law distribution, which can be originated by preferential attachment in growing networks. In this work, we ask whether the topology of the best performing DNNs shows the power law similar to biological and social networks and how to use the power law topology to construct well-performing and compact DNNs. We first find that the connectivities of sparse DNNs can be modeled by truncated power law distribution, which is one of the variations of the power law. The comparison of different DNNs reveals that the best performing networks correlated highly with the power law distribution. We further model the preferential attachment in DNNs evolution and find that continual learning in networks with growth in tasks correlates with the process of preferential attachment. These identified power law dynamics in DNNs can lead to the construction of highly accurate and compact DNNs based on preferential attachment. Inspired by the discovered findings, two novel applications have been proposed, including evolving optimal DNNs in sparse network generation and continual learning tasks with efficient network growth using power law dynamics. Experimental results indicate that the proposed applications can speed up training, save storage, and learn with fewer samples than other well-established baselines. Our demonstration of preferential attachment and power law in well-performing DNNs offers insight into designing and constructing more efficient deep learning.

14.
Artículo en Inglés | MEDLINE | ID: mdl-36107887

RESUMEN

Healthy ageing modifies neuromuscular control of human overground walking. Previous studies found that ageing changes gait biomechanics, but whether there is concurrent ageing-related modulation of neuromuscular control remains unclear. We analyzed gait kinematics and electromyographic signals (EMGs; 14 lower-limb and trunk muscles) collected at three speeds during overground walking in 11 healthy young adults (mean age of 23.4 years) and 11 healthy elderlies (67.2 years). Neuromuscular control was characterized by extracting muscle synergies from EMGs and the synergies of both groups were k -means-clustered. The synergies of the two groups were grossly similar, but we observed numerous cluster- and muscle-specific differences between the age groups. At the population level, some hip-motion-related synergy clusters were more frequently identified in elderlies while others, more frequent in young adults. Such differences in synergy prevalence between the age groups are consistent with the finding that elderlies had a larger hip flexion range. For the synergies shared between both groups, the elderlies had higher inter-subject variability of the temporal activations than young adults. To further explore what synergy characteristics may be related to this inter-subject variability, we found that the inter-subject variance of temporal activations correlated negatively with the sparseness of the synergies in elderlies but not young adults during slow walking. Overall, our results suggest that as humans age, not only are the muscle synergies for walking fine-tuned in structure, but their temporal activation patterns are also more heterogeneous across individuals, possibly reflecting individual differences in prior sensorimotor experience or ageing-related changes in limb neuro-musculoskeletal properties.


Asunto(s)
Marcha , Caminata , Adulto , Fenómenos Biomecánicos , Electromiografía/métodos , Marcha/fisiología , Humanos , Músculo Esquelético/fisiología , Caminata/fisiología , Adulto Joven
15.
Behav Pharmacol ; 22(4): 335-46, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21558844

RESUMEN

It has previously been demonstrated that the detrimental effect on the performance of a delayed nonmatch to sample (DNMS) memory task by exogenously administered cannabinoid (CB1) receptor agonist, WIN 55212-2 (WIN), is reversed by the receptor antagonist rimonabant. In addition, rimonabant administered alone elevates DNMS performance, presumably through the suppression of negative modulation by released endocannabinoids during normal task performance. Other investigations have shown that rimonabant enhances encoding of DNMS task-relevant information on a trial-by-trial, delay-dependent basis. In this study, these reciprocal pharmacological actions were completely characterized by long-term, chronic intrahippocampal infusion of both agents (WIN and rimonabant) in successive 2-week intervals. Such long-term exposure allowed extraction and confirmation of task-related firing patterns, in which rimonabant reversed the effects of CB1 agonists. This information was then utilized to artificially impose the facilitatory effects of rimonabant and to reverse the effects of WIN on DNMS performance, by delivering multichannel electrical stimulation in the same firing patterns to the same hippocampal regions. Direct comparison of normal and WIN-injected subjects, in which rimonabant injections and ensemble firing facilitated performance, verified reversal of the modulation of hippocampal memory processes by CB1 receptor agonists, including released endocannabinoids.


Asunto(s)
Cannabinoides/farmacología , Hipocampo/fisiología , Memoria/fisiología , Receptor Cannabinoide CB1/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Benzamidas/farmacología , Benzoxazinas/farmacología , Compuestos de Bifenilo/farmacología , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/efectos de los fármacos , Carbamatos/farmacología , Estimulación Eléctrica , Electrodos Implantados , Hipocampo/citología , Hipocampo/efectos de los fármacos , Inyecciones , Masculino , Morfolinas/farmacología , Naftalenos/farmacología , Neuronas/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Long-Evans , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Rimonabant
16.
Proc IEEE Inst Electr Electron Eng ; 98(3): 356-374, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20700470

RESUMEN

The successful development of neural prostheses requires an understanding of the neurobiological bases of cognitive processes, i.e., how the collective activity of populations of neurons results in a higher level process not predictable based on knowledge of the individual neurons and/or synapses alone. We have been studying and applying novel methods for representing nonlinear transformations of multiple spike train inputs (multiple time series of pulse train inputs) produced by synaptic and field interactions among multiple subclasses of neurons arrayed in multiple layers of incompletely connected units. We have been applying our methods to study of the hippocampus, a cortical brain structure that has been demonstrated, in humans and in animals, to perform the cognitive function of encoding new long-term (declarative) memories. Without their hippocampi, animals and humans retain a short-term memory (memory lasting approximately 1 min), and long-term memory for information learned prior to loss of hippocampal function. Results of more than 20 years of studies have demonstrated that both individual hippocampal neurons, and populations of hippocampal cells, e.g., the neurons comprising one of the three principal subsystems of the hippocampus, induce strong, higher order, nonlinear transformations of hippocampal inputs into hippocampal outputs. For one synaptic input or for a population of synchronously active synaptic inputs, such a transformation is represented by a sequence of action potential inputs being changed into a different sequence of action potential outputs. In other words, an incoming temporal pattern is transformed into a different, outgoing temporal pattern. For multiple, asynchronous synaptic inputs, such a transformation is represented by a spatiotemporal pattern of action potential inputs being changed into a different spatiotemporal pattern of action potential outputs. Our primary thesis is that the encoding of short-term memories into new, long-term memories represents the collective set of nonlinearities induced by the three or four principal subsystems of the hippocampus, i.e., entorhinal cortex-to-dentate gyrus, dentate gyrus-to-CA3 pyramidal cell region, CA3-to-CA1 pyramidal cell region, and CA1-to-subicular cortex. This hypothesis will be supported by studies using in vivo hippocampal multineuron recordings from animals performing memory tasks that require hippocampal function. The implications for this hypothesis will be discussed in the context of "cognitive prostheses"-neural prostheses for cortical brain regions believed to support cognitive functions, and that often are subject to damage due to stroke, epilepsy, dementia, and closed head trauma.

17.
PLoS One ; 15(1): e0227039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31929544

RESUMEN

To facilitate hand gesture recognition, we investigated the use of acoustic signals with an accelerometer and gyroscope at the human wrist. As a proof-of-concept, the prototype consisted of 10 microphone units in contact with the skin placed around the wrist along with an inertial measurement unit (IMU). The gesture recognition performance was evaluated through the identification of 13 gestures used in daily life. The optimal area for acoustic sensor placement at the wrist was examined using the minimum redundancy and maximum relevance feature selection algorithm. We recruited 10 subjects to perform over 10 trials for each set of hand gestures. The accuracy was 75% for a general model with the top 25 features selected, and the intra-subject average classification accuracy was over 80% with the same features using one microphone unit at the mid-anterior wrist and an IMU. These results indicate that acoustic signatures from the human wrist can aid IMU sensing for hand gesture recognition, and the selection of a few common features for all subjects could help with building a general model. The proposed multimodal framework helps address the single IMU sensing bottleneck for hand gestures during arm movement and/or locomotion.


Asunto(s)
Acústica , Gestos , Mano/fisiología , Patrones de Reconocimiento Fisiológico , Dispositivos Electrónicos Vestibles , Articulación de la Muñeca/fisiología , Adulto , Femenino , Humanos , Masculino , Movimiento , Adulto Joven
18.
Neurosci Lett ; 739: 135407, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32979459

RESUMEN

Advances in Deep Convolutional Neural Networks (DCNN) provide new opportunities for computational neuroscience to pose novel questions regarding the function of biological visual systems. Some attempts have been made to utilize advances in machine learning to answer neuroscientific questions, but how to appropriately make comparisons between the biological systems and artificial neural network structure is an open question. This analysis quantifies network properties of the mouse visual system and a common DCNN model (VGG16), to determine if this comparison is appropriate. Utilizing weighted graph-theoretic measures of node density (weighted node-degree), path length, local clustering coefficient, and betweenness, differences in functional connectivity patterns in the modern artificial computer vision system and the biological vision system are quantified. Results show that the mouse exhibits network measure distributions more similar to Poisson than normal, whereas the VGG16 exhibits network measure distributions with a more Gaussian shape than the sampled biological network. The artificial network shows higher density measures and shorter path lengths in comparison to the biological network. These results show that training a VGG16 for an object recognition task is unlikely to produce a network whose functional connectivity is similar to the mammalian visual system.


Asunto(s)
Modelos Neurológicos , Redes Neurales de la Computación , Neuronas/fisiología , Reconocimiento en Psicología , Corteza Visual/fisiología , Animales , Interpretación Estadística de Datos , Ratones
19.
J Neural Eng ; 17(6)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33059338

RESUMEN

Objective.Our study aims to investigate the feasibility of in-ear sensing for human-computer interface.Approach.We first measured the agreement between in-ear biopotential and scalp-electroencephalogram (EEG) signals by channel correlation and power spectral density analysis. Then we applied EEG compact network (EEGNet) for the classification of a two-class motor task using in-ear electrophysiological signals.Main results.The best performance using in-ear biopotential with global reference reached an average accuracy of 70.22% (cf 92.61% accuracy using scalp-EEG signals), but the performance in-ear biopotential with near-ear reference was poor.Significance.Our results suggest in-ear sensing would be a viable human-computer interface for movement prediction, but careful consideration should be given to the position of the reference electrode.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Recolección de Datos , Electroencefalografía/métodos , Humanos , Movimiento
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3273-3276, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018703

RESUMEN

Contingent learning is an agent for infants to explore the environment, which enhances the maturation of different developmental domains. This paper presents one of the first to investigate neural activities related to contingent learning of infants by analyzing their motor response that could elicit an audio-visual feedback. Three different kinds of motor response of infants were investigated, including unilateral kicks, synchronized kicks, and alternate kicks. Electroencephalographic (EEG) signals of infants were recorded before the motor experiments. Higher theta band power and lower upper beta power at the right temporal lobe of infants predicted a higher ratio of total unilateral kicks and a lower ratio of synchronized kicks at the later acquisition stage of the experiment. As contingent learning could be reflected by specific motor response in relation to the audio-visual stimuli, the results suggested that right temporal oscillations could predict different levels of contingent learning of infants.


Asunto(s)
Electroencefalografía , Aprendizaje , Retroalimentación Sensorial , Humanos , Lactante , Modalidades de Fisioterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA