Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34930833

RESUMEN

In the cell, the conformations of nascent polypeptide chains during translation are modulated by both the ribosome and its associated molecular chaperone, trigger factor. The specific interactions that underlie these modulations, however, are still not known in detail. Here, we combine protein engineering, in-cell and in vitro NMR spectroscopy, and molecular dynamics simulations to explore how proteins interact with the ribosome during their biosynthesis before folding occurs. Our observations of α-synuclein nascent chains in living Escherichia coli cells reveal that ribosome surface interactions dictate the dynamics of emerging disordered polypeptides in the crowded cytosol. We show that specific basic and aromatic motifs drive such interactions and directly compete with trigger factor binding while biasing the direction of the nascent chain during its exit out of the tunnel. These results reveal a structural basis for the functional role of the ribosome as a scaffold with holdase characteristics and explain how handover of the nascent chain to specific auxiliary proteins occurs among a host of other factors in the cytosol.


Asunto(s)
Secuencias de Aminoácidos/genética , Proteínas de Escherichia coli , Péptidos , Isomerasa de Peptidilprolil , Biosíntesis de Proteínas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Isomerasa de Peptidilprolil/química , Isomerasa de Peptidilprolil/metabolismo , Ingeniería de Proteínas , Pliegue de Proteína , Ribosomas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Proc Natl Acad Sci U S A ; 115(39): 9744-9749, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30201720

RESUMEN

Cotranslational folding (CTF) is a fundamental molecular process that ensures efficient protein biosynthesis and minimizes the formation of misfolded states. However, the complexity of this process makes it extremely challenging to obtain structural characterizations of CTF pathways. Here, we correlate observations of translationally arrested nascent chains with those of a systematic C-terminal truncation strategy. We create a detailed description of chain length-dependent free energy landscapes associated with folding of the FLN5 filamin domain, in isolation and on the ribosome, and thus, quantify a substantial destabilization of the native structure on the ribosome. We identify and characterize two folding intermediates formed in isolation, including a partially folded intermediate associated with the isomerization of a conserved cis proline residue. The slow folding associated with this process raises the prospect that neighboring unfolded domains might accumulate and misfold during biosynthesis. We develop a simple model to quantify the risk of misfolding in this situation and show that catalysis of folding by peptidyl-prolyl isomerases is sufficient to eliminate this hazard.


Asunto(s)
Filaminas/biosíntesis , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Pliegue de Proteína , Modificación Traduccional de las Proteínas , Deficiencias en la Proteostasis/metabolismo , Ribosomas/metabolismo , Secuencias Repetidas en Tándem , Termodinámica
3.
J Biomol NMR ; 63(2): 151-163, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26253948

RESUMEN

The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome-nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 µM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of (15)N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of (1)H magnetization without adversely affecting storage on N z during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ~1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Ribosomas/química , Sustancias Macromoleculares/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Subunidades Ribosómicas/química
4.
Nat Commun ; 13(1): 4243, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869078

RESUMEN

Co-translational folding is a fundamental process for the efficient biosynthesis of nascent polypeptides that emerge through the ribosome exit tunnel. To understand how this process is modulated by the shape and surface of the narrow tunnel, we have rationally engineered three exit tunnel protein loops (uL22, uL23 and uL24) of the 70S ribosome by CRISPR/Cas9 gene editing, and studied the co-translational folding of an immunoglobulin-like filamin domain (FLN5). Our thermodynamics measurements employing 19F/15N/methyl-TROSY NMR spectroscopy together with cryo-EM and molecular dynamics simulations reveal how the variations in the lengths of the loops present across species exert their distinct effects on the free energy of FLN5 folding. A concerted interplay of the uL23 and uL24 loops is sufficient to alter co-translational folding energetics, which we highlight by the opposite folding outcomes resulting from their extensions. These subtle modulations occur through a combination of the steric effects relating to the shape of the tunnel, the dynamic interactions between the ribosome surface and the unfolded nascent chain, and its altered exit pathway within the vestibule. These results illustrate the role of the exit tunnel structure in co-translational folding, and provide principles for how to remodel it to elicit a desired folding outcome.


Asunto(s)
Pliegue de Proteína , Ribosomas , Simulación de Dinámica Molecular , Biosíntesis de Proteínas , Proteínas/metabolismo , Ribosomas/metabolismo , Termodinámica
5.
Nat Chem ; 14(10): 1165-1173, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35927328

RESUMEN

Co-translational folding is crucial to ensure the production of biologically active proteins. The ribosome can alter the folding pathways of nascent polypeptide chains, yet a structural understanding remains largely inaccessible experimentally. We have developed site-specific labelling of nascent chains to detect and measure, using 19F nuclear magnetic resonance (NMR) spectroscopy, multiple states accessed by an immunoglobulin-like domain within a tandem repeat protein during biosynthesis. By examining ribosomes arrested at different stages during translation of this common structural motif, we observe highly broadened NMR resonances attributable to two previously unidentified intermediates, which are stably populated across a wide folding transition. Using molecular dynamics simulations and corroborated by cryo-electron microscopy, we obtain models of these partially folded states, enabling experimental verification of a ribosome-binding site that contributes to their high stabilities. We thus demonstrate a mechanism by which the ribosome could thermodynamically regulate folding and other co-translational processes.


Asunto(s)
Pliegue de Proteína , Ribosomas , Microscopía por Crioelectrón , Péptidos/metabolismo , Biosíntesis de Proteínas , Proteínas/química , Ribosomas/química
6.
Nat Chem ; 13(12): 1214-1220, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34650236

RESUMEN

Most proteins begin to fold during biosynthesis on the ribosome. It has been suggested that interactions between the emerging polypeptide and the ribosome surface might allow the ribosome itself to modulate co-translational folding. Here we combine protein engineering and NMR spectroscopy to characterize a series of interactions between the ribosome surface and unfolded nascent chains of the immunoglobulin-like FLN5 filamin domain. The strongest interactions are found for a C-terminal segment that is essential for folding, and we demonstrate quantitative agreement between the strength of this interaction and the energetics of the co-translational folding process itself. Mutations in this region that reduce the extent of binding result in a shift in the co-translational folding equilibrium towards the native state. Our results therefore demonstrate that a competition between folding and binding provides a simple, dynamic mechanism for the modulation of co-translational folding by the ribosome.


Asunto(s)
Filaminas/metabolismo , Pliegue de Proteína , Ribosomas/metabolismo , Secuencia de Aminoácidos , Filaminas/genética , Simulación de Dinámica Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Biosíntesis de Proteínas
7.
Nat Commun ; 12(1): 6447, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750347

RESUMEN

During biosynthesis, proteins can begin folding co-translationally to acquire their biologically-active structures. Folding, however, is an imperfect process and in many cases misfolding results in disease. Less is understood of how misfolding begins during biosynthesis. The human protein, alpha-1-antitrypsin (AAT) folds under kinetic control via a folding intermediate; its pathological variants readily form self-associated polymers at the site of synthesis, leading to alpha-1-antitrypsin deficiency. We observe that AAT nascent polypeptides stall during their biosynthesis, resulting in full-length nascent chains that remain bound to ribosome, forming a persistent ribosome-nascent chain complex (RNC) prior to release. We analyse the structure of these RNCs, which reveals compacted, partially-folded co-translational folding intermediates possessing molten-globule characteristics. We find that the highly-polymerogenic mutant, Z AAT, forms a distinct co-translational folding intermediate relative to wild-type. Its very modest structural differences suggests that the ribosome uniquely tempers the impact of deleterious mutations during nascent chain emergence. Following nascent chain release however, these co-translational folding intermediates guide post-translational folding outcomes thus suggesting that Z's misfolding is initiated from co-translational structure. Our findings demonstrate that co-translational folding intermediates drive how some proteins fold under kinetic control, and may thus also serve as tractable therapeutic targets for human disease.


Asunto(s)
Biosíntesis de Proteínas , Pliegue de Proteína , Ribosomas/metabolismo , Deficiencia de alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/química , Algoritmos , Secuencia de Aminoácidos , Animales , Western Blotting , Dicroismo Circular , Endopeptidasa K/metabolismo , Humanos , Cinética , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Conejos , Reticulocitos/citología , Reticulocitos/metabolismo , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiencia de alfa 1-Antitripsina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA