Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Evol Biol ; 13: 82, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23586586

RESUMEN

BACKGROUND: Gibbons (Hylobatidae) are the most diverse group of living apes. They exist as geographically-contiguous species which diverged more rapidly than did their close relatives, the great apes (Hominidae). Of the four extant gibbon genera, the evolutionary histories of two polyspecific genera, Hylobates and Nomascus, have been the particular focus of research but the DNA sequence data used was largely derived from the maternally inherited mitochondrial DNA (mtDNA) locus. RESULTS: To investigate the evolutionary relationships and divergence processes of gibbon species, particularly those of the Hylobates genus, we produced and analyzed a total of 11.5 kb DNA of sequence at 14 biparentally inherited autosomal loci. We find that on average gibbon genera have a high average sequence diversity but a lower degree of genetic differentiation as compared to great ape genera. Our multilocus species tree features H. pileatus in a basal position and a grouping of the four Sundaic island species (H. agilis, H. klossii, H. moloch and H. muelleri). We conducted pairwise comparisons based on an isolation-with-migration (IM) model and detect signals of asymmetric gene flow between H. lar and H. moloch, between H. agilis and H. muelleri, and between N. leucogenys and N. siki. CONCLUSIONS: Our multilocus analyses provide inferences of gibbon evolutionary histories complementary to those based on single gene data. The results of IM analyses suggest that the divergence processes of gibbons may be accompanied by gene flow. Future studies using analyses of multi-population model with samples of known provenance for Hylobates and Nomascus species would expand the understanding of histories of gene flow during divergences for these two gibbon genera.


Asunto(s)
Flujo Génico , Hylobates/clasificación , Hylobates/genética , Migración Animal , Animales , Evolución Biológica , ADN Mitocondrial/genética , Hylobatidae/clasificación , Hylobatidae/genética , Tipificación de Secuencias Multilocus , Filogenia
2.
BMC Evol Biol ; 12: 150, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22909292

RESUMEN

BACKGROUND: The evolutionary relationships of closely related species have long been of interest to biologists since these species experienced different evolutionary processes in a relatively short period of time. Comparison of phylogenies inferred from DNA sequences with differing inheritance patterns, such as mitochondrial, autosomal, and X and Y chromosomal loci, can provide more comprehensive inferences of the evolutionary histories of species. Gibbons, especially the genus Hylobates, are particularly intriguing as they consist of multiple closely related species which emerged rapidly and live in close geographic proximity. Our current understanding of relationships among Hylobates species is largely based on data from the maternally-inherited mitochondrial DNAs (mtDNAs). RESULTS: To infer the paternal histories of gibbon taxa, we sequenced multiple Y chromosomal loci from 26 gibbons representing 10 species. As expected, we find levels of sequence variation some five times lower than observed for the mitochondrial genome (mtgenome). Although our Y chromosome phylogenetic tree shows relatively low resolution compared to the mtgenome tree, our results are consistent with the monophyly of gibbon genera suggested by the mtgenome tree. In a comparison of the molecular dating of divergences and on the branching patterns of phylogeny trees between mtgenome and Y chromosome data, we found: 1) the inferred divergence estimates were more recent for the Y chromosome than for the mtgenome, 2) the species H. lar and H. pileatus are monophyletic in the mtgenome phylogeny, respectively, but a H. pileatus individual falls into the H. lar Y chromosome clade. CONCLUSIONS: Based on the ~6.4 kb of Y chromosomal DNA sequence data generated for each of the 26 individuals in this study, we provide molecular inferences on gibbon and particularly on Hylobates evolution complementary to those from mtDNA data. Overall, our results illustrate the utility of comparative studies of loci with different inheritance patterns for investigating potential sex specific processes on the evolutionary histories of closely related taxa, and emphasize the need for further sampling of gibbons of known provenance.


Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Hylobates/genética , Filogenia , Cromosoma Y/genética , Animales , Cartilla de ADN , Femenino , Genoma Mitocondrial , Hylobates/clasificación , Masculino , Análisis de Secuencia de ADN
3.
Cell Cycle ; 15(8): 1073-83, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26940341

RESUMEN

The clonal expansion of activated T cells is pivotal for the induction of protective immunity. Protein phosphatase 4 (PP4) is a ubiquitously expressed serine/threonine phosphatase with reported functions in thymocyte development and DNA damage responses. However, the role of PP4 in T cell immunity has not been thoroughly investigated. In this report, our data showed that T cell-specific ablation of PP4 resulted in defective adaptive immunity, impaired T cell homeostatic expansion, and inefficient T cell proliferation. This hypo-proliferation was associated with a partial G1-S cell cycle arrest, enhanced transcriptions of CDK inhibitors and elevated activation of AMPK. In addition, resveratrol, a known AMPK activator, induced similar G1-S arrests, while lentivirally-transduced WT or constitutively-active AMPKα1 retarded the proliferation of WT T cells. Further investigations showed that PP4 co-immunoprecipitated with AMPKα1, and the over-expression of PP4 inhibited AMPK phosphorylation, thereby implicating PP4 for the negative regulation of AMPK. In summary, our results indicate that PP4 is an essential modulator for T cell proliferation and immune responses; they further suggest a potential link between PP4 functions, AMPK activation and G1-S arrest in activated T cells.


Asunto(s)
Inmunidad Adaptativa , Fosfoproteínas Fosfatasas/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo , Adenilato Quinasa/metabolismo , Animales , Antígenos CD4/metabolismo , Puntos de Control del Ciclo Celular , Proliferación Celular , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Activación Enzimática , Eliminación de Gen , Células HEK293 , Homeostasis , Humanos , Inmunidad Humoral , Integrasas/metabolismo , Interleucina-2/biosíntesis , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfoproteínas Fosfatasas/deficiencia , Transducción de Señal
4.
PLoS One ; 10(12): e0145880, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26710253

RESUMEN

Immune responses are critically regulated by the functions of CD4 helper T cells. Based on their secreted cytokines, helper T cells are further categorized into different subsets like Treg or Th17 cells, which suppress or promote inflammatory responses, respectively. Signals from IL-2 activate the transcription factor STAT5 to promote Treg but suppress Th17 cell differentiation. Our previous results found that the deficiency of a dual-specificity phosphatase, DUSP4, induced STAT5 hyper-activation, enhanced IL-2 signaling, and increased T cell proliferation. In this report, we examined the effects of DUSP4 deficiency on helper T cell differentiation and STAT5 regulation. Our in vivo data showed that DUSP4 mice were more resistant to the induction of autoimmune encephalitis, while in vitro differentiations revealed enhanced iTreg and reduced Th17 polarization in DUSP4-deficient T cells. To study the cause of this altered helper T cell polarization, we performed luciferase reporter assays and confirmed that, as predicted by our previous report, DUSP4 over-expression suppressed the transcription factor activity of STAT5. Surprisingly, we also found that DUSP4-deficient T but not B cells exhibited elevated STAT5 protein levels, and over-expressed DUSP4 destabilized STAT5 in vitro; moreover, this destabilization required the phosphatase activity of DUSP4, and was insensitive to MG132 treatment. Finally, domain-mapping results showed that both the substrate-interacting and the phosphatase domains of DUSP4 were required for its optimal interaction with STAT5, while the coiled-coil domain of STAT5 appeared to hinder this interaction. Our data thus provide the first genetic evidence that DUSP4 is important for helper T cell development. In addition, they also help uncover the novel, DUSP4-mediated regulation of STAT5 protein stability.


Asunto(s)
Proteínas Tirosina Fosfatasas/metabolismo , Factor de Transcripción STAT5/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Animales , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estabilidad Proteica , Proteínas Tirosina Fosfatasas/deficiencia , Proteínas Tirosina Fosfatasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factor de Transcripción STAT5/química , Factor de Transcripción STAT5/genética , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Células Th17/citología , Células Th17/inmunología , Células Th17/metabolismo
5.
Cell Biosci ; 4: 25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24904742

RESUMEN

BACKGROUND: Protein phosphates 4 (PP4), encoded by the ppp4c gene, is a ubiquitously expressed phosphatase that has been implicated in the regulation of cytokine signaling and lymphocyte survival; recent reports suggest that PP4 may be involved in pre-TCR signaling and B cell development. However, whether PP4 also modulates the functions of peripheral T cells has not been investigated due to the lack of a suitable in vivo model. Treg cells are a specialized subset of CD4 helper T cells that can suppress the proliferation of activated effector T cells. In the absence of this negative regulation, autoimmune syndromes and inflammatory diseases, such as human Crohn's disease, will arise. RESULTS: In this report, we generated mice with T cell-specific ablation of the ppp4c gene (CD4cre:PP4(f/f)) and a Foxp3-GFP reporter gene to examine the roles of PP4 in Treg development and function. Characterizations of the CD4cre:PP4(f/f) mice showed that PP4 deficiency induced partial αß T lymphopenia and T cell hypo-proliferation. Further analyses revealed significant reductions in the numbers of thymic and peripheral Treg cells, as well as in the efficiency of in vitro Treg polarization. In addition, PP4-deficient Treg cells exhibited reduced suppressor functions that were associated with decreased IL-10, CTLA4, GITR and CD103 expression. More interestingly, the CD4cre:PP4(f/f) mice developed spontaneous rectal prolapse and colitis with symptoms similar to human Crohn's disease. The pathogenesis of colitis required the presence of commensal bacteria, and was correlated with reduced Treg cells in the gut. Nevertheless, PP4-deficient Treg cells were still capable of suppressing experimental colitis, suggesting that multiple factors contributed to the onset of the spontaneous colitis. CONCLUSIONS: While the molecular mechanisms remain to be investigated, our results clearly show that PP4 plays a non-redundant role for the differentiation, suppressor activity and gut homeostasis of Treg cells. The onset of spontaneous colitis in the CD4cre:PP4(f/f) mice further suggests that PP4 is essential for the maintenance of protective gut immunity. The CD4cre:PP4(f/f) mice thus may serve as a good model for studying the interactions between Treg cells and gut commensal bacteria for the regulation of mucosal immunity.

6.
PLoS One ; 5(12): e14419, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21203450

RESUMEN

BACKGROUND: Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. CONCLUSIONS/SIGNIFICANCE: Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial , Hylobates/clasificación , Hylobates/genética , Animales , Secuencia de Bases , Teorema de Bayes , Calibración , Cartilla de ADN/genética , Evolución Molecular , Fósiles , Geografía , Cariotipificación , Funciones de Verosimilitud , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA